Endometriosis detection and localization in laparoscopic gynecology

Endometriosis is a common gynecologic condition typically treated via laparoscopic surgery. Its visual versatility makes it hard to identify for non-specialized physicians and challenging to classify or localize via computer-aided analysis. In this work, we take a first step in the direction of loca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2022-02, Vol.81 (5), p.6191-6215
Hauptverfasser: Leibetseder, Andreas, Schoeffmann, Klaus, Keckstein, Jörg, Keckstein, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6215
container_issue 5
container_start_page 6191
container_title Multimedia tools and applications
container_volume 81
creator Leibetseder, Andreas
Schoeffmann, Klaus
Keckstein, Jörg
Keckstein, Simon
description Endometriosis is a common gynecologic condition typically treated via laparoscopic surgery. Its visual versatility makes it hard to identify for non-specialized physicians and challenging to classify or localize via computer-aided analysis. In this work, we take a first step in the direction of localized endometriosis recognition in laparoscopic gynecology videos using region-based deep neural networks Faster R-CNN and Mask R-CNN. We in particular use and further develop publicly available data for transfer learning deep detection models according to distinctive visual lesion characteristics. Subsequently, we evaluate the performance impact of different data augmentation techniques, including selected geometrical and visual transformations, specular reflection removal as well as region tracking across video frames. Finally, particular attention is given to creating reasonable data segmentation for training, validation and testing. The best performing result surprisingly is achieved by randomly applying simple cropping combined with rotation, resulting in a mean average segmentation precision of 32.4% at 50-95% intersection over union overlap (64.2% for 50% overlap).
doi_str_mv 10.1007/s11042-021-11730-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2632033404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632033404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-fa4da1299dc5b15782857effa5f3b9f1371bd2e0ef9d94d5a629edbd18e9d4b53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA62huHpPJUkp9QMGNrkMmjzJlOhmT6aL-emNHcOfqXi7nnHv4ELoFcg-EyIcMQDjFhAIGkIxgOEMLEJJhKSmcl501BEtB4BJd5bwjBGpB-QKt1oOLez-lLuYuV85P3k5dHCozuKqP1vTdlzkduqHqzWhSzDaOna22x8Hb2Mft8RpdBNNnf_M7l-jjaf2-esGbt-fX1eMGW1azCQfDnQGqlLOiLd0a2gjpQzAisFYFYBJaRz3xQTnFnTA1Vd61DhqvHG8FW6K7OXdM8fPg86R38ZCG8lLTmlHCGCe8qOissqVqTj7oMXV7k44aiP6BpWdYusDSJ1gaionNplzEw9anv-h_XN_wVm3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632033404</pqid></control><display><type>article</type><title>Endometriosis detection and localization in laparoscopic gynecology</title><source>Springer Nature - Complete Springer Journals</source><creator>Leibetseder, Andreas ; Schoeffmann, Klaus ; Keckstein, Jörg ; Keckstein, Simon</creator><creatorcontrib>Leibetseder, Andreas ; Schoeffmann, Klaus ; Keckstein, Jörg ; Keckstein, Simon</creatorcontrib><description>Endometriosis is a common gynecologic condition typically treated via laparoscopic surgery. Its visual versatility makes it hard to identify for non-specialized physicians and challenging to classify or localize via computer-aided analysis. In this work, we take a first step in the direction of localized endometriosis recognition in laparoscopic gynecology videos using region-based deep neural networks Faster R-CNN and Mask R-CNN. We in particular use and further develop publicly available data for transfer learning deep detection models according to distinctive visual lesion characteristics. Subsequently, we evaluate the performance impact of different data augmentation techniques, including selected geometrical and visual transformations, specular reflection removal as well as region tracking across video frames. Finally, particular attention is given to creating reasonable data segmentation for training, validation and testing. The best performing result surprisingly is achieved by randomly applying simple cropping combined with rotation, resulting in a mean average segmentation precision of 32.4% at 50-95% intersection over union overlap (64.2% for 50% overlap).</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-021-11730-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Endometriosis ; Gynecology ; Laparoscopy ; Localization ; Machine learning ; Multimedia Information Systems ; Physicians ; Segmentation ; Special Purpose and Application-Based Systems ; Specular reflection</subject><ispartof>Multimedia tools and applications, 2022-02, Vol.81 (5), p.6191-6215</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-fa4da1299dc5b15782857effa5f3b9f1371bd2e0ef9d94d5a629edbd18e9d4b53</citedby><cites>FETCH-LOGICAL-c363t-fa4da1299dc5b15782857effa5f3b9f1371bd2e0ef9d94d5a629edbd18e9d4b53</cites><orcidid>0000-0002-9535-966X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-021-11730-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-021-11730-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Leibetseder, Andreas</creatorcontrib><creatorcontrib>Schoeffmann, Klaus</creatorcontrib><creatorcontrib>Keckstein, Jörg</creatorcontrib><creatorcontrib>Keckstein, Simon</creatorcontrib><title>Endometriosis detection and localization in laparoscopic gynecology</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Endometriosis is a common gynecologic condition typically treated via laparoscopic surgery. Its visual versatility makes it hard to identify for non-specialized physicians and challenging to classify or localize via computer-aided analysis. In this work, we take a first step in the direction of localized endometriosis recognition in laparoscopic gynecology videos using region-based deep neural networks Faster R-CNN and Mask R-CNN. We in particular use and further develop publicly available data for transfer learning deep detection models according to distinctive visual lesion characteristics. Subsequently, we evaluate the performance impact of different data augmentation techniques, including selected geometrical and visual transformations, specular reflection removal as well as region tracking across video frames. Finally, particular attention is given to creating reasonable data segmentation for training, validation and testing. The best performing result surprisingly is achieved by randomly applying simple cropping combined with rotation, resulting in a mean average segmentation precision of 32.4% at 50-95% intersection over union overlap (64.2% for 50% overlap).</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Endometriosis</subject><subject>Gynecology</subject><subject>Laparoscopy</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Physicians</subject><subject>Segmentation</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Specular reflection</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA62huHpPJUkp9QMGNrkMmjzJlOhmT6aL-emNHcOfqXi7nnHv4ELoFcg-EyIcMQDjFhAIGkIxgOEMLEJJhKSmcl501BEtB4BJd5bwjBGpB-QKt1oOLez-lLuYuV85P3k5dHCozuKqP1vTdlzkduqHqzWhSzDaOna22x8Hb2Mft8RpdBNNnf_M7l-jjaf2-esGbt-fX1eMGW1azCQfDnQGqlLOiLd0a2gjpQzAisFYFYBJaRz3xQTnFnTA1Vd61DhqvHG8FW6K7OXdM8fPg86R38ZCG8lLTmlHCGCe8qOissqVqTj7oMXV7k44aiP6BpWdYusDSJ1gaionNplzEw9anv-h_XN_wVm3M</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Leibetseder, Andreas</creator><creator>Schoeffmann, Klaus</creator><creator>Keckstein, Jörg</creator><creator>Keckstein, Simon</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9535-966X</orcidid></search><sort><creationdate>20220201</creationdate><title>Endometriosis detection and localization in laparoscopic gynecology</title><author>Leibetseder, Andreas ; Schoeffmann, Klaus ; Keckstein, Jörg ; Keckstein, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-fa4da1299dc5b15782857effa5f3b9f1371bd2e0ef9d94d5a629edbd18e9d4b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Endometriosis</topic><topic>Gynecology</topic><topic>Laparoscopy</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Physicians</topic><topic>Segmentation</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Specular reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leibetseder, Andreas</creatorcontrib><creatorcontrib>Schoeffmann, Klaus</creatorcontrib><creatorcontrib>Keckstein, Jörg</creatorcontrib><creatorcontrib>Keckstein, Simon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leibetseder, Andreas</au><au>Schoeffmann, Klaus</au><au>Keckstein, Jörg</au><au>Keckstein, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endometriosis detection and localization in laparoscopic gynecology</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>81</volume><issue>5</issue><spage>6191</spage><epage>6215</epage><pages>6191-6215</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Endometriosis is a common gynecologic condition typically treated via laparoscopic surgery. Its visual versatility makes it hard to identify for non-specialized physicians and challenging to classify or localize via computer-aided analysis. In this work, we take a first step in the direction of localized endometriosis recognition in laparoscopic gynecology videos using region-based deep neural networks Faster R-CNN and Mask R-CNN. We in particular use and further develop publicly available data for transfer learning deep detection models according to distinctive visual lesion characteristics. Subsequently, we evaluate the performance impact of different data augmentation techniques, including selected geometrical and visual transformations, specular reflection removal as well as region tracking across video frames. Finally, particular attention is given to creating reasonable data segmentation for training, validation and testing. The best performing result surprisingly is achieved by randomly applying simple cropping combined with rotation, resulting in a mean average segmentation precision of 32.4% at 50-95% intersection over union overlap (64.2% for 50% overlap).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-021-11730-1</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9535-966X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2022-02, Vol.81 (5), p.6191-6215
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2632033404
source Springer Nature - Complete Springer Journals
subjects Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Endometriosis
Gynecology
Laparoscopy
Localization
Machine learning
Multimedia Information Systems
Physicians
Segmentation
Special Purpose and Application-Based Systems
Specular reflection
title Endometriosis detection and localization in laparoscopic gynecology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endometriosis%20detection%20and%20localization%20in%20laparoscopic%20gynecology&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Leibetseder,%20Andreas&rft.date=2022-02-01&rft.volume=81&rft.issue=5&rft.spage=6191&rft.epage=6215&rft.pages=6191-6215&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-021-11730-1&rft_dat=%3Cproquest_cross%3E2632033404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632033404&rft_id=info:pmid/&rfr_iscdi=true