Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems

In this paper, we consider the periodic solutions of the following non-autonomous second order discrete Hamiltonian system $$\Delta^{2}u(n-1)=\nabla F(n,u(n)), \quad n\in\mathbb{Z}.$$ When the nonlinear function $F(n,x)$ is like-quadratic for $x$, we obtain some existence and multiplicity results un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constructive mathematical analysis 2020, Vol.3 (4), p.178-188
Hauptverfasser: Lıu, Chungen, Zhong, Yuyou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 4
container_start_page 178
container_title Constructive mathematical analysis
container_volume 3
creator Lıu, Chungen
Zhong, Yuyou
description In this paper, we consider the periodic solutions of the following non-autonomous second order discrete Hamiltonian system $$\Delta^{2}u(n-1)=\nabla F(n,u(n)), \quad n\in\mathbb{Z}.$$ When the nonlinear function $F(n,x)$ is like-quadratic for $x$, we obtain some existence and multiplicity results under twisting conditions by using the least action principle and a multiple critical point theorem. The methods and main ideas using in this paper are variational method and critical point theory. The twisting conditions in our results are different from that in the lituratures.
doi_str_mv 10.33205/cma.796813
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2631899897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631899897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1713-a38b1054331c1d51ef291b17da29161fafa692e9a8039afe5b808c9575eb87813</originalsourceid><addsrcrecordid>eNpNkMFKAzEURYMoWGpX_kDApUzNmzSTZCm1tkK1QnU9ZDIJpMwkNcmA_XsH68LVfYvDvbyD0C2QOaUlYQ-6V3MuKwH0Ak3KikFRSiov_93XaJbSgRBScrkAQieoW327lI3XBivf4tehy-7YOe3yCQeL3010oXUa70M3ZBd8wjZE_Ba8GnLwoQ9Dwnujg2-LXWxNxE8u6WiywRvVu25knPJ4fxo3-nSDrqzqkpn95RR9Pq8-lptiu1u_LB-3hQYOtFBUNEDYglLQ0DIwtpTQAG_VmBVYZVUlSyOVIFQqa1gjiNCScWYawcf3p-ju3HuM4WswKdeHMEQ_TtZlRUFIKSQfqfszpWNIKRpbH6PrVTzVQOpfo_VotD4bpT_gOWny</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631899897</pqid></control><display><type>article</type><title>Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Lıu, Chungen ; Zhong, Yuyou</creator><creatorcontrib>Lıu, Chungen ; Zhong, Yuyou</creatorcontrib><description>In this paper, we consider the periodic solutions of the following non-autonomous second order discrete Hamiltonian system $$\Delta^{2}u(n-1)=\nabla F(n,u(n)), \quad n\in\mathbb{Z}.$$ When the nonlinear function $F(n,x)$ is like-quadratic for $x$, we obtain some existence and multiplicity results under twisting conditions by using the least action principle and a multiple critical point theorem. The methods and main ideas using in this paper are variational method and critical point theory. The twisting conditions in our results are different from that in the lituratures.</description><identifier>ISSN: 2651-2939</identifier><identifier>EISSN: 2651-2939</identifier><identifier>DOI: 10.33205/cma.796813</identifier><language>eng</language><publisher>Ankara: Constructive Mathematical Analysis</publisher><ispartof>Constructive mathematical analysis, 2020, Vol.3 (4), p.178-188</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1713-a38b1054331c1d51ef291b17da29161fafa692e9a8039afe5b808c9575eb87813</cites><orcidid>0000-0001-7240-7377 ; 0000-0002-6885-1747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Lıu, Chungen</creatorcontrib><creatorcontrib>Zhong, Yuyou</creatorcontrib><title>Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems</title><title>Constructive mathematical analysis</title><description>In this paper, we consider the periodic solutions of the following non-autonomous second order discrete Hamiltonian system $$\Delta^{2}u(n-1)=\nabla F(n,u(n)), \quad n\in\mathbb{Z}.$$ When the nonlinear function $F(n,x)$ is like-quadratic for $x$, we obtain some existence and multiplicity results under twisting conditions by using the least action principle and a multiple critical point theorem. The methods and main ideas using in this paper are variational method and critical point theory. The twisting conditions in our results are different from that in the lituratures.</description><issn>2651-2939</issn><issn>2651-2939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkMFKAzEURYMoWGpX_kDApUzNmzSTZCm1tkK1QnU9ZDIJpMwkNcmA_XsH68LVfYvDvbyD0C2QOaUlYQ-6V3MuKwH0Ak3KikFRSiov_93XaJbSgRBScrkAQieoW327lI3XBivf4tehy-7YOe3yCQeL3010oXUa70M3ZBd8wjZE_Ba8GnLwoQ9Dwnujg2-LXWxNxE8u6WiywRvVu25knPJ4fxo3-nSDrqzqkpn95RR9Pq8-lptiu1u_LB-3hQYOtFBUNEDYglLQ0DIwtpTQAG_VmBVYZVUlSyOVIFQqa1gjiNCScWYawcf3p-ju3HuM4WswKdeHMEQ_TtZlRUFIKSQfqfszpWNIKRpbH6PrVTzVQOpfo_VotD4bpT_gOWny</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lıu, Chungen</creator><creator>Zhong, Yuyou</creator><general>Constructive Mathematical Analysis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7240-7377</orcidid><orcidid>https://orcid.org/0000-0002-6885-1747</orcidid></search><sort><creationdate>2020</creationdate><title>Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems</title><author>Lıu, Chungen ; Zhong, Yuyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1713-a38b1054331c1d51ef291b17da29161fafa692e9a8039afe5b808c9575eb87813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lıu, Chungen</creatorcontrib><creatorcontrib>Zhong, Yuyou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Constructive mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lıu, Chungen</au><au>Zhong, Yuyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems</atitle><jtitle>Constructive mathematical analysis</jtitle><date>2020</date><risdate>2020</risdate><volume>3</volume><issue>4</issue><spage>178</spage><epage>188</epage><pages>178-188</pages><issn>2651-2939</issn><eissn>2651-2939</eissn><abstract>In this paper, we consider the periodic solutions of the following non-autonomous second order discrete Hamiltonian system $$\Delta^{2}u(n-1)=\nabla F(n,u(n)), \quad n\in\mathbb{Z}.$$ When the nonlinear function $F(n,x)$ is like-quadratic for $x$, we obtain some existence and multiplicity results under twisting conditions by using the least action principle and a multiple critical point theorem. The methods and main ideas using in this paper are variational method and critical point theory. The twisting conditions in our results are different from that in the lituratures.</abstract><cop>Ankara</cop><pub>Constructive Mathematical Analysis</pub><doi>10.33205/cma.796813</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7240-7377</orcidid><orcidid>https://orcid.org/0000-0002-6885-1747</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2651-2939
ispartof Constructive mathematical analysis, 2020, Vol.3 (4), p.178-188
issn 2651-2939
2651-2939
language eng
recordid cdi_proquest_journals_2631899897
source DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
title Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Multiplicity%20of%20Periodic%20Solutions%20for%20Nonautonomous%20Second-Order%20Discrete%20Hamiltonian%20Systems&rft.jtitle=Constructive%20mathematical%20analysis&rft.au=L%C4%B1u,%20Chungen&rft.date=2020&rft.volume=3&rft.issue=4&rft.spage=178&rft.epage=188&rft.pages=178-188&rft.issn=2651-2939&rft.eissn=2651-2939&rft_id=info:doi/10.33205/cma.796813&rft_dat=%3Cproquest_cross%3E2631899897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631899897&rft_id=info:pmid/&rfr_iscdi=true