Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems

In this paper, we consider the periodic solutions of the following non-autonomous second order discrete Hamiltonian system $$\Delta^{2}u(n-1)=\nabla F(n,u(n)), \quad n\in\mathbb{Z}.$$ When the nonlinear function $F(n,x)$ is like-quadratic for $x$, we obtain some existence and multiplicity results un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constructive mathematical analysis 2020, Vol.3 (4), p.178-188
Hauptverfasser: Lıu, Chungen, Zhong, Yuyou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the periodic solutions of the following non-autonomous second order discrete Hamiltonian system $$\Delta^{2}u(n-1)=\nabla F(n,u(n)), \quad n\in\mathbb{Z}.$$ When the nonlinear function $F(n,x)$ is like-quadratic for $x$, we obtain some existence and multiplicity results under twisting conditions by using the least action principle and a multiple critical point theorem. The methods and main ideas using in this paper are variational method and critical point theory. The twisting conditions in our results are different from that in the lituratures.
ISSN:2651-2939
2651-2939
DOI:10.33205/cma.796813