Clifford Algebraic Approach to the De Donder–Weyl Hamiltonian Theory
The Clifford algebraic formulation of the Duffin–Kemmer–Petiau (DKP) algebras is applied to recast the De Donder–Weyl Hamiltonian (DWH) theory as an algebraic description independent of the matrix representation of the DKP algebra. We show that the DWH equations for antisymmetric fields arise out of...
Gespeichert in:
Veröffentlicht in: | Advances in applied Clifford algebras 2022-04, Vol.32 (2), Article 23 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Clifford algebraic formulation of the Duffin–Kemmer–Petiau (DKP) algebras is applied to recast the De Donder–Weyl Hamiltonian (DWH) theory as an algebraic description independent of the matrix representation of the DKP algebra. We show that the DWH equations for antisymmetric fields arise out of the action of the DKP algebra on certain invariant subspaces of the Clifford algebra which carry the representations of the fields. The matrix representation-free formula for the bracket associated with the DKP form of the DWH equations is also derived. This bracket satisfies a generalization of the standard properties of the Poisson bracket. |
---|---|
ISSN: | 0188-7009 1661-4909 |
DOI: | 10.1007/s00006-022-01202-6 |