On small fractional parts of polynomial-like functions

In a recent paper, Madritsch and Tichy established Diophantine inequalities for the fractional parts of polynomial-like functions. In particular, for f ( x ) = x k + x c where k is a positive integer, c > 1 is a non-integer and ξ a real number, they obtained min 2 ≤ p ≤ X ‖ ξ ⌊ f ( p ) ⌋ ‖ ≪ k ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2022-02, Vol.197 (2), p.319-332
1. Verfasser: Minelli, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a recent paper, Madritsch and Tichy established Diophantine inequalities for the fractional parts of polynomial-like functions. In particular, for f ( x ) = x k + x c where k is a positive integer, c > 1 is a non-integer and ξ a real number, they obtained min 2 ≤ p ≤ X ‖ ξ ⌊ f ( p ) ⌋ ‖ ≪ k , c , ϵ X - ρ 2 ( c , k ) + ϵ for ρ 2 ( c , k ) > 0 explicitly given. In the present note, we improve upon their results of the case c > k and c > 4 .
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-021-01650-5