On small fractional parts of polynomial-like functions
In a recent paper, Madritsch and Tichy established Diophantine inequalities for the fractional parts of polynomial-like functions. In particular, for f ( x ) = x k + x c where k is a positive integer, c > 1 is a non-integer and ξ a real number, they obtained min 2 ≤ p ≤ X ‖ ξ ⌊ f ( p ) ⌋ ‖ ≪ k ,...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2022-02, Vol.197 (2), p.319-332 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a recent paper, Madritsch and Tichy established Diophantine inequalities for the fractional parts of polynomial-like functions. In particular, for
f
(
x
)
=
x
k
+
x
c
where
k
is a positive integer,
c
>
1
is a non-integer and
ξ
a real number, they obtained
min
2
≤
p
≤
X
‖
ξ
⌊
f
(
p
)
⌋
‖
≪
k
,
c
,
ϵ
X
-
ρ
2
(
c
,
k
)
+
ϵ
for
ρ
2
(
c
,
k
)
>
0
explicitly given. In the present note, we improve upon their results of the case
c
>
k
and
c
>
4
. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-021-01650-5 |