A differentiability criterion for continuous functions

We show that, with the exception of the symmetric derivative, each limit of the form lim h → 0 A f ( x + a h ) + B f ( x + b h ) h , ( A + B = 0 , A a + B b = 1 ) , is equivalent to the ordinary derivative, for all continuous functions at x . And, up to a non-zero scalar multiple, these are the only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2022-02, Vol.197 (2), p.285-291
1. Verfasser: Catoiu, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that, with the exception of the symmetric derivative, each limit of the form lim h → 0 A f ( x + a h ) + B f ( x + b h ) h , ( A + B = 0 , A a + B b = 1 ) , is equivalent to the ordinary derivative, for all continuous functions at x . And, up to a non-zero scalar multiple, these are the only criteria for differentiating all continuous functions at x , by taking limits of first order difference quotients with two function evaluations.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-021-01574-0