A differentiability criterion for continuous functions
We show that, with the exception of the symmetric derivative, each limit of the form lim h → 0 A f ( x + a h ) + B f ( x + b h ) h , ( A + B = 0 , A a + B b = 1 ) , is equivalent to the ordinary derivative, for all continuous functions at x . And, up to a non-zero scalar multiple, these are the only...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2022-02, Vol.197 (2), p.285-291 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that, with the exception of the symmetric derivative, each limit of the form
lim
h
→
0
A
f
(
x
+
a
h
)
+
B
f
(
x
+
b
h
)
h
,
(
A
+
B
=
0
,
A
a
+
B
b
=
1
)
,
is equivalent to the ordinary derivative, for all continuous functions at
x
. And, up to a non-zero scalar multiple, these are the only criteria for differentiating all continuous functions at
x
, by taking limits of first order difference quotients with two function evaluations. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-021-01574-0 |