Derivations with Values in the Ideal of τ-Compact Operators Affiliated with a Semifinite von Neumann Algebra

Let M be a semifinite von Neumann algebra with a faithful normal semifinite trace τ and let A be an arbitrary von Neumann subalgebra of M . We characterize the class of symmetric ideals E in M such that derivations δ : A → E are necessarily inner, which is a unification and far-reaching extension of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2022-03, Vol.390 (2), p.577-616
Hauptverfasser: Ber, A., Huang, J., Levitina, G., Sukochev, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a semifinite von Neumann algebra with a faithful normal semifinite trace τ and let A be an arbitrary von Neumann subalgebra of M . We characterize the class of symmetric ideals E in M such that derivations δ : A → E are necessarily inner, which is a unification and far-reaching extension of the results due to Johnson and Parrott (J Funct Anal 11:39–61, 1972), due to Kaftal and Weiss (J Funct Anal 62:202–220, 1985), and due to Popa (J Funct Anal 71:393–408, 1987). In particular, we show that every derivation from A into the ideal C 0 ( M , τ ) of all τ -compact operators is inner, establishing a semifinite version of the Johnson–Parrott–Popa Theorem which is different from Popa and Rădulescu (Duke Math J 57(2):485–518, 1988, Theorem 1.1) and contrasts to the example of a non-inner derivation established in Popa and Rădulescu (1988, Theorem 1.2).
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-022-04313-0