Existence of a Positive Solution for a Class of Choquard Equation with Upper Critical Exponent

In this paper, we investigate the existence of nontrivial solution for the following class of Choquard equation where N ∈ N , N ≥ 3 , α ∈ ( 0 , N ) , I α is a Riesz potential, λ > 0 is a parameter, p = N + α N - 2 is the upper Hardy–Littlewood–Sobolev critical exponent and q ∈ ( 2 , 2 N N - 2 ) ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations and dynamical systems 2022, Vol.30 (1), p.51-59
Hauptverfasser: Pan, Hui-Lan, Liu, Jiu, Tang, Chun-Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the existence of nontrivial solution for the following class of Choquard equation where N ∈ N , N ≥ 3 , α ∈ ( 0 , N ) , I α is a Riesz potential, λ > 0 is a parameter, p = N + α N - 2 is the upper Hardy–Littlewood–Sobolev critical exponent and q ∈ ( 2 , 2 N N - 2 ) . We prove that there exists λ 0 > 0 such that for λ ≥ λ 0 , problem (1) possesses one positive radial solution.
ISSN:0971-3514
0974-6870
DOI:10.1007/s12591-018-0437-3