Existence of a Positive Solution for a Class of Choquard Equation with Upper Critical Exponent
In this paper, we investigate the existence of nontrivial solution for the following class of Choquard equation where N ∈ N , N ≥ 3 , α ∈ ( 0 , N ) , I α is a Riesz potential, λ > 0 is a parameter, p = N + α N - 2 is the upper Hardy–Littlewood–Sobolev critical exponent and q ∈ ( 2 , 2 N N - 2 ) ....
Gespeichert in:
Veröffentlicht in: | Differential equations and dynamical systems 2022, Vol.30 (1), p.51-59 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the existence of nontrivial solution for the following class of Choquard equation
where
N
∈
N
,
N
≥
3
,
α
∈
(
0
,
N
)
,
I
α
is a Riesz potential,
λ
>
0
is a parameter,
p
=
N
+
α
N
-
2
is the upper Hardy–Littlewood–Sobolev critical exponent and
q
∈
(
2
,
2
N
N
-
2
)
.
We prove that there exists
λ
0
>
0
such that for
λ
≥
λ
0
,
problem (1) possesses one positive radial solution. |
---|---|
ISSN: | 0971-3514 0974-6870 |
DOI: | 10.1007/s12591-018-0437-3 |