van der Corput inequality for real line and Wiener-Wintner theorem for amenable groups
We extend the classical van der Corput inequality to the real line. As a consequence, we obtain a simple proof of the Wiener-Wintner theorem for the RR-action which assert that for any family of maps (Tt)t∈R(Tt)t∈R acting on the Lebesgue measure space (Ω,A,μ)(Ω,A,μ), where μμ is a probability measur...
Gespeichert in:
Veröffentlicht in: | Constructive mathematical analysis 2021-12, Vol.4 (4), p.420-427 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the classical van der Corput inequality to the real line. As a consequence, we obtain a simple proof of the Wiener-Wintner theorem for the RR-action which assert that for any family of maps (Tt)t∈R(Tt)t∈R acting on
the Lebesgue measure space (Ω,A,μ)(Ω,A,μ), where μμ is a probability measure and for any t∈Rt∈R, TtTt is measure-preserving transformation on measure space (Ω,A,μ)(Ω,A,μ) with
Tt∘Ts=Tt+sTt∘Ts=Tt+s, for any t,s∈Rt,s∈R. Then, for any
f∈L1(μ)f∈L1(μ), there is a single null set off which $\displaystyle \lim_{T \rightarrow +\infty} \frac{1}{T}\int_{0}^{T} f(T_t\omega) e^{2 i \pi \theta t} dt$limT→+∞1T∫0Tf(Ttω)e2iπθtdt
exists for all θ∈θ∈\RRR. We further present the joining proof of the amenable group version of Wiener-Wintner theorem due to Ornstein and Weiss. |
---|---|
ISSN: | 2651-2939 2651-2939 |
DOI: | 10.33205/cma.1029202 |