Multivariate sampling Kantorovich operators: quantitative estimates in Orlicz spaces

In this paper, we establish a quantitative estimate for multivariate sampling Kantorovich operators by means of the modulus of continuity in the general setting of Orlicz spaces. As a consequence, the qualitative order of convergence can be obtained, in case of functions belonging to suitable Lipsch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constructive mathematical analysis 2021-01, Vol.4 (2), p.229-241
Hauptverfasser: ANGELONI, Laura, ÇETİN, Nursel, COSTARELLI, Danilo, SAMBUCINI, Anna Rita, VINTI, Gianluca
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish a quantitative estimate for multivariate sampling Kantorovich operators by means of the modulus of continuity in the general setting of Orlicz spaces. As a consequence, the qualitative order of convergence can be obtained, in case of functions belonging to suitable Lipschitz classes. In the particular instance of L^p-spaces, using a direct approach, we obtain a sharper estimate than that one that can be deduced from the general case.
ISSN:2651-2939
2651-2939
DOI:10.33205/cma.876890