Matrix valued positive definite kernels related to the generalized Aitken's integral for Gaussians

We introduce a method to construct general multivariate positive definite kernels on a nonempty set XX that employs a prescribed bounded completely monotone function and special multivariate functions on XX. The method is consistent with a generalized version of Aitken's integral formula for Ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constructive mathematical analysis 2021-12, Vol.4 (4), p.384-399
Hauptverfasser: Menegatto, Valdir, Oliveira, Claudemir
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a method to construct general multivariate positive definite kernels on a nonempty set XX that employs a prescribed bounded completely monotone function and special multivariate functions on XX. The method is consistent with a generalized version of Aitken's integral formula for Gaussians. In the case in which XX is a cartesian product, the method produces nonseparable positive definite kernels that may be useful in multivariate interpolation. In addition, it can be interpreted as an abstract multivariate version of the well-established Gneiting's model for constructing space-time covariances commonly highly cited in the literature. Many parametric models discussed in statistics can be interpreted as particular cases of the method.
ISSN:2651-2939
2651-2939
DOI:10.33205/cma.964096