On Higher Order Weierstrass Points on \(X_0(N)\)

Let \(\Gamma\) be the Fuchsian group of the first kind. For an even integer \(m\ge 4\), we describe the space \(H^{m/2}\left(\mathfrak R_\Gamma\right)\) of \(m/2\)--holomorphic differentials in terms of a subspace \(S_m^H(\Gamma)\) of the space of (holomorphic) cuspidal modular forms \(S_m(\Gamma)\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-02
Hauptverfasser: Muić, Goran, Mikoč, Damir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(\Gamma\) be the Fuchsian group of the first kind. For an even integer \(m\ge 4\), we describe the space \(H^{m/2}\left(\mathfrak R_\Gamma\right)\) of \(m/2\)--holomorphic differentials in terms of a subspace \(S_m^H(\Gamma)\) of the space of (holomorphic) cuspidal modular forms \(S_m(\Gamma)\). This generalizes classical isomorphism \(S_2(\Gamma)\simeq H^{1}\left(\mathfrak R_\Gamma\right)\). We study the properties of \(S_m^H(\Gamma)\). As an application, we describe the algorithm implemented in SAGE for testing if a cusp at \(\infty\) for non-hyperelliptic \(X_0(N)\) is a \(\frac{m}{2}\)-Weierstrass point.
ISSN:2331-8422