Maps Preserving Drazin Invertible Operator Matrices with Non-singular Schur Complement
Let B ( H ) be the algebra of all bounded linear operators acting on a complex Hilbert space H . In this paper, we investigate the general form of bijective unital maps Ψ : B ( H ) → B ( H ) , not necessarily linear, that preserve Drazin invertible 2 × 2 operator matrices of index one with generaliz...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2022-04, Vol.19 (2), Article 70 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
B
(
H
)
be the algebra of all bounded linear operators acting on a complex Hilbert space
H
. In this paper, we investigate the general form of bijective unital maps
Ψ
:
B
(
H
)
→
B
(
H
)
, not necessarily linear, that preserve Drazin invertible
2
×
2
operator matrices of index one with generalized Schur complements which are either invertible or Drazin invertible of index one. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-022-01992-w |