Visco-plastic response of deep tunnels based on a fractional damage creep constitutive model

Hard rock tunnels under high geo-stresses, and weak, soft rock tunnels show evident continued deformation after excavation, which is closely associated with the time-dependent behavior of rocks. In this paper, a novel fractional damage visco-plastic model was put forward to describe the creep respon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica 2022-02, Vol.17 (2), p.613-633
Hauptverfasser: Xu, Guowen, Gutierrez, Marte, Arora, Ketan, Wang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hard rock tunnels under high geo-stresses, and weak, soft rock tunnels show evident continued deformation after excavation, which is closely associated with the time-dependent behavior of rocks. In this paper, a novel fractional damage visco-plastic model was put forward to describe the creep response of rocks with the following elements: (1) an Abel dashpot, (2) a damaged Abel dashpot coupled with damage formulation that is based on a statistical distribution of microfractures, (3) elastic spring, and (4) Hoek–Brown plastic element. Firstly, the creep equation of the visco-plastic model was derived and validated against experimental data. Secondly, a closed-form analytical solution for the creep deformation of the surrounding rock around deep, circular tunnels was obtained by adopting the proposed model. Then, parametric studies were conducted to reveal the influence of the time-dependent parameters on the deformation of surrounding rocks. Finally, laboratory tests were conducted to provide data to validate the model. The auxiliary tunnel of the Jinping II hydropower station was chosen to demonstrate the analytical solution’s applicability to real-world problems. The results showed that: (1) the proposed constitutive model can adequately reflect the primary, secondary and tertiary creep stages of rocks; (2) the tunnel deformation increases as the Geological Strength Index (GSI) value in the Hoek–Brown model decreases, and for each time-dependent parameter, its influence on the tunnel deformation is more evident in weak rock mass than that in rock mass with higher GSI; (3) all features regarding the relationship between the tunnel deformation and the parameters of surrounding rocks agree well with physical meanings of each parameter; and (4) the deformation curves of the analytical solution and laboratory and field tests are consistent with each other with respect to curve shape and the magnitude, indicating that the proposed analytical solution can be reliably used to predict and study the creep deformation of tunnels.
ISSN:1861-1125
1861-1133
DOI:10.1007/s11440-021-01226-5