High‐dimensional quantile regression: Convolution smoothing and concave regularization
ℓ1‐penalized quantile regression (QR) is widely used for analysing high‐dimensional data with heterogeneity. It is now recognized that the ℓ1‐penalty introduces non‐negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and orac...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2022-02, Vol.84 (1), p.205-233 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 233 |
---|---|
container_issue | 1 |
container_start_page | 205 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 84 |
creator | Tan, Kean Ming Wang, Lan Zhou, Wen‐Xin |
description | ℓ1‐penalized quantile regression (QR) is widely used for analysing high‐dimensional data with heterogeneity. It is now recognized that the ℓ1‐penalty introduces non‐negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized M‐estimation with strongly convex loss functions have been well studied, the extant literature on QR is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non‐smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution‐type smoothed QR with iteratively reweighted ℓ1‐regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted ℓ1‐penalized smoothed QR estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results. |
doi_str_mv | 10.1111/rssb.12485 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2631325042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631325042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3705-cba0de58fe73273c600631061a0ae18879908e1721cfeb0be385ee781bcf1d183</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGl2HESO-ygAopUCYnCgpXlOJPWVRoXOykqK47AETgLR-EkOA1rZjM_-uZp5iF0SvCI-LiwzuUjEsU82UMDEqcszHjK931N0yxkMYkO0ZFzS-wjZXSAXiZ6vvj5-Cz0CmqnTS2r4LWVdaMrCCzMLbhuehmMTb0xVdv4JnArY5qFrueBrIvvL2VqJTc7vK2k1e-yo47RQSkrByd_eYieb2-expNw-nB3P76ahooynIQql7iAhJfAaMSoSv1hlOCUSCyBcM6yDHMgLCKqhBznQHkCwDjJVUkKwukQnfW6a2teW3CNWJrW-j-ciLwSjRIcR5467ylljXMWSrG2eiXtVhAsOutEZ53YWedh0sNv3oXtP6R4nM2u-51fkQp0pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631325042</pqid></control><display><type>article</type><title>High‐dimensional quantile regression: Convolution smoothing and concave regularization</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Tan, Kean Ming ; Wang, Lan ; Zhou, Wen‐Xin</creator><creatorcontrib>Tan, Kean Ming ; Wang, Lan ; Zhou, Wen‐Xin</creatorcontrib><description>ℓ1‐penalized quantile regression (QR) is widely used for analysing high‐dimensional data with heterogeneity. It is now recognized that the ℓ1‐penalty introduces non‐negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized M‐estimation with strongly convex loss functions have been well studied, the extant literature on QR is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non‐smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution‐type smoothed QR with iteratively reweighted ℓ1‐regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted ℓ1‐penalized smoothed QR estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12485</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>concave regularization ; Convergence ; Convexity ; Convolution ; Dimensional analysis ; Empirical analysis ; Estimation bias ; Heterogeneity ; minimum signal strength ; oracle property ; quantile regression ; Regression analysis ; Regularization ; Signal strength ; Smoothness ; Statistical analysis ; Statistical methods ; Statistics</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2022-02, Vol.84 (1), p.205-233</ispartof><rights>2021 John Wiley & Sons Ltd</rights><rights>Copyright © 2022 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3705-cba0de58fe73273c600631061a0ae18879908e1721cfeb0be385ee781bcf1d183</citedby><cites>FETCH-LOGICAL-c3705-cba0de58fe73273c600631061a0ae18879908e1721cfeb0be385ee781bcf1d183</cites><orcidid>0000-0001-8491-275X ; 0000-0002-3217-0202 ; 0000-0002-2761-485X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frssb.12485$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frssb.12485$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tan, Kean Ming</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Zhou, Wen‐Xin</creatorcontrib><title>High‐dimensional quantile regression: Convolution smoothing and concave regularization</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>ℓ1‐penalized quantile regression (QR) is widely used for analysing high‐dimensional data with heterogeneity. It is now recognized that the ℓ1‐penalty introduces non‐negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized M‐estimation with strongly convex loss functions have been well studied, the extant literature on QR is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non‐smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution‐type smoothed QR with iteratively reweighted ℓ1‐regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted ℓ1‐penalized smoothed QR estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.</description><subject>concave regularization</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Convolution</subject><subject>Dimensional analysis</subject><subject>Empirical analysis</subject><subject>Estimation bias</subject><subject>Heterogeneity</subject><subject>minimum signal strength</subject><subject>oracle property</subject><subject>quantile regression</subject><subject>Regression analysis</subject><subject>Regularization</subject><subject>Signal strength</subject><subject>Smoothness</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGl2HESO-ygAopUCYnCgpXlOJPWVRoXOykqK47AETgLR-EkOA1rZjM_-uZp5iF0SvCI-LiwzuUjEsU82UMDEqcszHjK931N0yxkMYkO0ZFzS-wjZXSAXiZ6vvj5-Cz0CmqnTS2r4LWVdaMrCCzMLbhuehmMTb0xVdv4JnArY5qFrueBrIvvL2VqJTc7vK2k1e-yo47RQSkrByd_eYieb2-expNw-nB3P76ahooynIQql7iAhJfAaMSoSv1hlOCUSCyBcM6yDHMgLCKqhBznQHkCwDjJVUkKwukQnfW6a2teW3CNWJrW-j-ciLwSjRIcR5467ylljXMWSrG2eiXtVhAsOutEZ53YWedh0sNv3oXtP6R4nM2u-51fkQp0pg</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Tan, Kean Ming</creator><creator>Wang, Lan</creator><creator>Zhou, Wen‐Xin</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8491-275X</orcidid><orcidid>https://orcid.org/0000-0002-3217-0202</orcidid><orcidid>https://orcid.org/0000-0002-2761-485X</orcidid></search><sort><creationdate>202202</creationdate><title>High‐dimensional quantile regression: Convolution smoothing and concave regularization</title><author>Tan, Kean Ming ; Wang, Lan ; Zhou, Wen‐Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3705-cba0de58fe73273c600631061a0ae18879908e1721cfeb0be385ee781bcf1d183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>concave regularization</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Convolution</topic><topic>Dimensional analysis</topic><topic>Empirical analysis</topic><topic>Estimation bias</topic><topic>Heterogeneity</topic><topic>minimum signal strength</topic><topic>oracle property</topic><topic>quantile regression</topic><topic>Regression analysis</topic><topic>Regularization</topic><topic>Signal strength</topic><topic>Smoothness</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Kean Ming</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Zhou, Wen‐Xin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Kean Ming</au><au>Wang, Lan</au><au>Zhou, Wen‐Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐dimensional quantile regression: Convolution smoothing and concave regularization</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2022-02</date><risdate>2022</risdate><volume>84</volume><issue>1</issue><spage>205</spage><epage>233</epage><pages>205-233</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>ℓ1‐penalized quantile regression (QR) is widely used for analysing high‐dimensional data with heterogeneity. It is now recognized that the ℓ1‐penalty introduces non‐negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized M‐estimation with strongly convex loss functions have been well studied, the extant literature on QR is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non‐smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution‐type smoothed QR with iteratively reweighted ℓ1‐regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted ℓ1‐penalized smoothed QR estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1111/rssb.12485</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-8491-275X</orcidid><orcidid>https://orcid.org/0000-0002-3217-0202</orcidid><orcidid>https://orcid.org/0000-0002-2761-485X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2022-02, Vol.84 (1), p.205-233 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_journals_2631325042 |
source | Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | concave regularization Convergence Convexity Convolution Dimensional analysis Empirical analysis Estimation bias Heterogeneity minimum signal strength oracle property quantile regression Regression analysis Regularization Signal strength Smoothness Statistical analysis Statistical methods Statistics |
title | High‐dimensional quantile regression: Convolution smoothing and concave regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90dimensional%20quantile%20regression:%20Convolution%20smoothing%20and%C2%A0concave%20regularization&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Tan,%20Kean%20Ming&rft.date=2022-02&rft.volume=84&rft.issue=1&rft.spage=205&rft.epage=233&rft.pages=205-233&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12485&rft_dat=%3Cproquest_cross%3E2631325042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631325042&rft_id=info:pmid/&rfr_iscdi=true |