High‐dimensional quantile regression: Convolution smoothing and concave regularization

ℓ1‐penalized quantile regression (QR) is widely used for analysing high‐dimensional data with heterogeneity. It is now recognized that the ℓ1‐penalty introduces non‐negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and orac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2022-02, Vol.84 (1), p.205-233
Hauptverfasser: Tan, Kean Ming, Wang, Lan, Zhou, Wen‐Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue 1
container_start_page 205
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 84
creator Tan, Kean Ming
Wang, Lan
Zhou, Wen‐Xin
description ℓ1‐penalized quantile regression (QR) is widely used for analysing high‐dimensional data with heterogeneity. It is now recognized that the ℓ1‐penalty introduces non‐negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized M‐estimation with strongly convex loss functions have been well studied, the extant literature on QR is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non‐smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution‐type smoothed QR with iteratively reweighted ℓ1‐regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted ℓ1‐penalized smoothed QR estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.
doi_str_mv 10.1111/rssb.12485
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2631325042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631325042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3705-cba0de58fe73273c600631061a0ae18879908e1721cfeb0be385ee781bcf1d183</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGl2HESO-ygAopUCYnCgpXlOJPWVRoXOykqK47AETgLR-EkOA1rZjM_-uZp5iF0SvCI-LiwzuUjEsU82UMDEqcszHjK931N0yxkMYkO0ZFzS-wjZXSAXiZ6vvj5-Cz0CmqnTS2r4LWVdaMrCCzMLbhuehmMTb0xVdv4JnArY5qFrueBrIvvL2VqJTc7vK2k1e-yo47RQSkrByd_eYieb2-expNw-nB3P76ahooynIQql7iAhJfAaMSoSv1hlOCUSCyBcM6yDHMgLCKqhBznQHkCwDjJVUkKwukQnfW6a2teW3CNWJrW-j-ciLwSjRIcR5467ylljXMWSrG2eiXtVhAsOutEZ53YWedh0sNv3oXtP6R4nM2u-51fkQp0pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631325042</pqid></control><display><type>article</type><title>High‐dimensional quantile regression: Convolution smoothing and concave regularization</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Tan, Kean Ming ; Wang, Lan ; Zhou, Wen‐Xin</creator><creatorcontrib>Tan, Kean Ming ; Wang, Lan ; Zhou, Wen‐Xin</creatorcontrib><description>ℓ1‐penalized quantile regression (QR) is widely used for analysing high‐dimensional data with heterogeneity. It is now recognized that the ℓ1‐penalty introduces non‐negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized M‐estimation with strongly convex loss functions have been well studied, the extant literature on QR is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non‐smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution‐type smoothed QR with iteratively reweighted ℓ1‐regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted ℓ1‐penalized smoothed QR estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12485</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>concave regularization ; Convergence ; Convexity ; Convolution ; Dimensional analysis ; Empirical analysis ; Estimation bias ; Heterogeneity ; minimum signal strength ; oracle property ; quantile regression ; Regression analysis ; Regularization ; Signal strength ; Smoothness ; Statistical analysis ; Statistical methods ; Statistics</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2022-02, Vol.84 (1), p.205-233</ispartof><rights>2021 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2022 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3705-cba0de58fe73273c600631061a0ae18879908e1721cfeb0be385ee781bcf1d183</citedby><cites>FETCH-LOGICAL-c3705-cba0de58fe73273c600631061a0ae18879908e1721cfeb0be385ee781bcf1d183</cites><orcidid>0000-0001-8491-275X ; 0000-0002-3217-0202 ; 0000-0002-2761-485X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frssb.12485$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frssb.12485$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tan, Kean Ming</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Zhou, Wen‐Xin</creatorcontrib><title>High‐dimensional quantile regression: Convolution smoothing and concave regularization</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>ℓ1‐penalized quantile regression (QR) is widely used for analysing high‐dimensional data with heterogeneity. It is now recognized that the ℓ1‐penalty introduces non‐negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized M‐estimation with strongly convex loss functions have been well studied, the extant literature on QR is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non‐smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution‐type smoothed QR with iteratively reweighted ℓ1‐regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted ℓ1‐penalized smoothed QR estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.</description><subject>concave regularization</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Convolution</subject><subject>Dimensional analysis</subject><subject>Empirical analysis</subject><subject>Estimation bias</subject><subject>Heterogeneity</subject><subject>minimum signal strength</subject><subject>oracle property</subject><subject>quantile regression</subject><subject>Regression analysis</subject><subject>Regularization</subject><subject>Signal strength</subject><subject>Smoothness</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGl2HESO-ygAopUCYnCgpXlOJPWVRoXOykqK47AETgLR-EkOA1rZjM_-uZp5iF0SvCI-LiwzuUjEsU82UMDEqcszHjK931N0yxkMYkO0ZFzS-wjZXSAXiZ6vvj5-Cz0CmqnTS2r4LWVdaMrCCzMLbhuehmMTb0xVdv4JnArY5qFrueBrIvvL2VqJTc7vK2k1e-yo47RQSkrByd_eYieb2-expNw-nB3P76ahooynIQql7iAhJfAaMSoSv1hlOCUSCyBcM6yDHMgLCKqhBznQHkCwDjJVUkKwukQnfW6a2teW3CNWJrW-j-ciLwSjRIcR5467ylljXMWSrG2eiXtVhAsOutEZ53YWedh0sNv3oXtP6R4nM2u-51fkQp0pg</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Tan, Kean Ming</creator><creator>Wang, Lan</creator><creator>Zhou, Wen‐Xin</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8491-275X</orcidid><orcidid>https://orcid.org/0000-0002-3217-0202</orcidid><orcidid>https://orcid.org/0000-0002-2761-485X</orcidid></search><sort><creationdate>202202</creationdate><title>High‐dimensional quantile regression: Convolution smoothing and concave regularization</title><author>Tan, Kean Ming ; Wang, Lan ; Zhou, Wen‐Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3705-cba0de58fe73273c600631061a0ae18879908e1721cfeb0be385ee781bcf1d183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>concave regularization</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Convolution</topic><topic>Dimensional analysis</topic><topic>Empirical analysis</topic><topic>Estimation bias</topic><topic>Heterogeneity</topic><topic>minimum signal strength</topic><topic>oracle property</topic><topic>quantile regression</topic><topic>Regression analysis</topic><topic>Regularization</topic><topic>Signal strength</topic><topic>Smoothness</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Kean Ming</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Zhou, Wen‐Xin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Kean Ming</au><au>Wang, Lan</au><au>Zhou, Wen‐Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐dimensional quantile regression: Convolution smoothing and concave regularization</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2022-02</date><risdate>2022</risdate><volume>84</volume><issue>1</issue><spage>205</spage><epage>233</epage><pages>205-233</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>ℓ1‐penalized quantile regression (QR) is widely used for analysing high‐dimensional data with heterogeneity. It is now recognized that the ℓ1‐penalty introduces non‐negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized M‐estimation with strongly convex loss functions have been well studied, the extant literature on QR is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non‐smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution‐type smoothed QR with iteratively reweighted ℓ1‐regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted ℓ1‐penalized smoothed QR estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1111/rssb.12485</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-8491-275X</orcidid><orcidid>https://orcid.org/0000-0002-3217-0202</orcidid><orcidid>https://orcid.org/0000-0002-2761-485X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2022-02, Vol.84 (1), p.205-233
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_journals_2631325042
source Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects concave regularization
Convergence
Convexity
Convolution
Dimensional analysis
Empirical analysis
Estimation bias
Heterogeneity
minimum signal strength
oracle property
quantile regression
Regression analysis
Regularization
Signal strength
Smoothness
Statistical analysis
Statistical methods
Statistics
title High‐dimensional quantile regression: Convolution smoothing and concave regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90dimensional%20quantile%20regression:%20Convolution%20smoothing%20and%C2%A0concave%20regularization&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Tan,%20Kean%20Ming&rft.date=2022-02&rft.volume=84&rft.issue=1&rft.spage=205&rft.epage=233&rft.pages=205-233&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12485&rft_dat=%3Cproquest_cross%3E2631325042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631325042&rft_id=info:pmid/&rfr_iscdi=true