High‐dimensional quantile regression: Convolution smoothing and concave regularization

ℓ1‐penalized quantile regression (QR) is widely used for analysing high‐dimensional data with heterogeneity. It is now recognized that the ℓ1‐penalty introduces non‐negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and orac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2022-02, Vol.84 (1), p.205-233
Hauptverfasser: Tan, Kean Ming, Wang, Lan, Zhou, Wen‐Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ℓ1‐penalized quantile regression (QR) is widely used for analysing high‐dimensional data with heterogeneity. It is now recognized that the ℓ1‐penalty introduces non‐negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized M‐estimation with strongly convex loss functions have been well studied, the extant literature on QR is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non‐smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution‐type smoothed QR with iteratively reweighted ℓ1‐regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted ℓ1‐penalized smoothed QR estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.
ISSN:1369-7412
1467-9868
DOI:10.1111/rssb.12485