Phosphoric acid-modified commercial kieselguhr supported palladium nanoparticles as efficient catalysts for low-temperature hydrodeoxygenation of lignin derivatives in water

Efficient production of high value-added chemicals and biofuels via low-temperature chemoselective HDO of lignin derivatives in water is still a challenge. Here, we construct a low-cost, active and stable Pd/PCE catalyst using phosphoric acid-modified commercial Celite (PCE) as the support, and this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2022-02, Vol.24 (4), p.157-1577
Hauptverfasser: Yangcheng, Ruixue, Ran, Jiansu, Liu, Zhaohui, Cui, Yuntong, Wang, Jianjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient production of high value-added chemicals and biofuels via low-temperature chemoselective HDO of lignin derivatives in water is still a challenge. Here, we construct a low-cost, active and stable Pd/PCE catalyst using phosphoric acid-modified commercial Celite (PCE) as the support, and this catalyst exhibits excellent activity in low-temperature HDO of vanillin as well as other lignin derivatives in water. The superior catalytic performance is due to the presence of P species on the surface of Pd/PCE, accelerating the selective conversion of the intermediate into the final product. Detailed experimental and mechanistic studies reveal that the rapid conversion of the intermediate to the final product proceeds via a free-radical process in an interfacial microenvironment created by intimate interacting between the P species and Pd NPs. The insights of this work provide a new low-cost catalytic system for efficient production of valuable chemicals and future biofuels from lignin derivatives. Phosphoric species incorporated onto commercial Celite interacting with Pd NPs greatly enhance the efficiency of low-temperature hydrodeoxygenation of lignin derivatives in water via accelerating the conversion of the generated intermediate.
ISSN:1463-9262
1463-9270
DOI:10.1039/d1gc04243b