k Positivity and Schwarz inequality for two linear maps
For a given A ∈ M n , we define the linear maps Ψ A , - and Φ A , + from M n into M n by Ψ A , - ( X ) : = t r ( A X ) I - X and Φ A , + ( X ) : = t r ( A X ) I + X t , where M n is the n × n matrix algebra and X t is the transpose of X . First, we show that Ψ A , - is a k positive map if and only i...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2022-02, Vol.26 (1), Article 16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a given
A
∈
M
n
,
we define the linear maps
Ψ
A
,
-
and
Φ
A
,
+
from
M
n
into
M
n
by
Ψ
A
,
-
(
X
)
:
=
t
r
(
A
X
)
I
-
X
and
Φ
A
,
+
(
X
)
:
=
t
r
(
A
X
)
I
+
X
t
,
where
M
n
is the
n
×
n
matrix algebra and
X
t
is the transpose of
X
. First, we show that
Ψ
A
,
-
is a
k
positive map if and only if
A
≥
I
and
‖
A
-
1
‖
(
k
)
≤
1
. Then
Φ
A
,
+
is a
k
(
k
≥
2
)
positive map if and only if
A
≥
0
with
λ
i
λ
j
≥
1
for all
i
≠
j
=
1
,
2
,
…
n
,
where
λ
1
,
λ
2
,
…
λ
n
are eigenvalues of
A
. At last, we consider
k
positivity of above maps on
B
(
H
)
(the von Neumann algebra of all bounded linear operators on the separable complex Hilbert space
H
)
. |
---|---|
ISSN: | 1385-1292 1572-9281 |
DOI: | 10.1007/s11117-022-00863-8 |