Factors affecting ultimate tensile strength and impact toughness of 3D printed parts using fractional factorial design
This paper aims to investigate the mechanical properties of specimens printed by 3D open-source printers. It discusses the effect of five factors (part orientation, layer height, extrusion width, nozzle diameter, and filament temperature) on the ultimate tensile strength and the impact toughness of...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2022-03, Vol.119 (3-4), p.2639-2651 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper aims to investigate the mechanical properties of specimens printed by 3D open-source printers. It discusses the effect of five factors (part orientation, layer height, extrusion width, nozzle diameter, and filament temperature) on the ultimate tensile strength and the impact toughness of the 3D-printed samples. A 2
5–1
resolution V fractional factorial experiment was run with the 16 samples printed on a Prusa I3 MK3S in PLA. Tensile strength and impact toughness were tested using Instron 3367 and Tinius Olsen 66 testers, respectively. In analyzing the data, a normal probability plot of the effects complimented with ANOVA (Analysis Of Variance) revealed that, for both responses, only part orientation was statistically significant at
p
= 0
.
05. Regression equations were used to predict the ultimate tensile strength and the impact toughness as a function of the part orientation. Both the toughness response and the tensile strength response are maximized with horizontal part orientation. Verification experiments have been implemented to validate the adopted regression equations’ predictions under different circumstances, and the results of those experiments appear to confirm the model. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-021-08433-0 |