Characterizations of the Symmetric T(θ,q)-Classical Orthogonal q-Polynomials

In this paper, we give two characterizations for symmetric q -Dunkl-classical orthogonal polynomials. The first one is related to a spectral problem for a second-order linear q -difference differential operator. The second one is given by a distribution equation of Pearson type fulfilled by their co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2022-04, Vol.19 (2), Article 66
Hauptverfasser: Bouras, B., Habbachi, Y., Marcellán, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we give two characterizations for symmetric q -Dunkl-classical orthogonal polynomials. The first one is related to a spectral problem for a second-order linear q -difference differential operator. The second one is given by a distribution equation of Pearson type fulfilled by their corresponding linear functionals. Then, we show that the q 2 -analogue of generalized Hermite and the q 2 -analogue of generalized Gegenbauer polynomials are, up a dilation, the only symmetric q -Dunkl-classical orthogonal polynomials.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-022-01986-8