Characterizations of the Symmetric T(θ,q)-Classical Orthogonal q-Polynomials
In this paper, we give two characterizations for symmetric q -Dunkl-classical orthogonal polynomials. The first one is related to a spectral problem for a second-order linear q -difference differential operator. The second one is given by a distribution equation of Pearson type fulfilled by their co...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2022-04, Vol.19 (2), Article 66 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we give two characterizations for symmetric
q
-Dunkl-classical orthogonal polynomials. The first one is related to a spectral problem for a second-order linear
q
-difference differential operator. The second one is given by a distribution equation of Pearson type fulfilled by their corresponding linear functionals. Then, we show that the
q
2
-analogue of generalized Hermite and the
q
2
-analogue of generalized Gegenbauer polynomials are, up a dilation, the only symmetric
q
-Dunkl-classical orthogonal polynomials. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-022-01986-8 |