Multi-stage Ensemble Model for Cross-market Recommendation

This paper describes the solution of our team PolimiRank for the WSDM Cup 2022 on cross-market recommendation. The goal of the competition is to effectively exploit the information extracted from different markets to improve the ranking accuracy of recommendations on two target markets. Our model co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-02
1. Verfasser: Bernardis, Cesare
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the solution of our team PolimiRank for the WSDM Cup 2022 on cross-market recommendation. The goal of the competition is to effectively exploit the information extracted from different markets to improve the ranking accuracy of recommendations on two target markets. Our model consists in a multi-stage approach based on the combination of data belonging to different markets. In the first stage, state-of-the-art recommenders are used to predict scores for user-item couples, which are ensembled in the following 2 stages, employing a simple linear combination and more powerful Gradient Boosting Decision Tree techniques. Our team ranked 4th in the final leaderboard.
ISSN:2331-8422