Learning Convex Polyhedra With Margin

We present an improved algorithm for quasi-properly learning convex polyhedra in the realizable PAC setting from data with a margin. Our learning algorithm constructs a consistent polyhedron as an intersection of about t \log t halfspaces with constant-size margins in time polynomial in t (where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2022-03, Vol.68 (3), p.1976-1984
Hauptverfasser: Gottlieb, Lee-Ad, Kaufman, Eran, Kontorovich, Aryeh, Nivasch, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an improved algorithm for quasi-properly learning convex polyhedra in the realizable PAC setting from data with a margin. Our learning algorithm constructs a consistent polyhedron as an intersection of about t \log t halfspaces with constant-size margins in time polynomial in t (where t is the number of halfspaces forming an optimal polyhedron). We also identify distinct generalizations of the notion of margin from hyperplanes to polyhedra and investigate how they relate geometrically; this result may have ramifications beyond the learning setting.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2021.3134898