Role of aluminum distribution on the growth of CuIn0.75Al0.25Se2 films and numerical simulation of p-CuIn0.75Al0.25Se2/n-CuAlSe2 heterojunction solar cell

Chalcopyrite thin films of CuIn 0.75 Al 0.25 Se 2 have been grown by a two-stage process containing e-beam evaporation of a threefold (In/Cu/Al/Se) precursor deposition onto glass substrates in a high vacuum followed by post selenization at various temperatures (300–550 °C) using a horizontal tubula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2022-02, Vol.33 (5), p.2699-2715
Hauptverfasser: Babujani, Shaik, Srinivas, Bandi, Hema Chandra, G., Venkata Subbaiah, Y. P., Gupta, Mukul, Prasada Rao, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chalcopyrite thin films of CuIn 0.75 Al 0.25 Se 2 have been grown by a two-stage process containing e-beam evaporation of a threefold (In/Cu/Al/Se) precursor deposition onto glass substrates in a high vacuum followed by post selenization at various temperatures (300–550 °C) using a horizontal tubular furnace. The X-ray diffraction pattern of precursor layers selenized at ≤ 525 °C shows the formation of co-existence of CuInSe 2 and Cu(In,Al)Se 2 phases, as well as a mixture of two Cu(In,Al)Se 2 phases with different Al content. The precursor layers selenized at 550 °C results in the formation of single-phase Cu(In,Al)Se 2 thin films. The presence of an intense A 1 mode at 174.7 cm −1 in the Raman spectra of selenized films at 550 °C confirms the growth of Cu(In,Al)Se 2 phase. The energy-dispersive spectra of stacked layers selenized at 550 °C shows a Cu-poor and (In + Al)-rich composition with atomic ratios of Cu/(In + Al) = 0.79, Al/(In + Al) = 0.25, and Se/(Cu + In + Al) = 0.98. The secondary ion mass spectra depth study reveals a shift in Al distribution from graded to uniform with an increase in selenization temperature to 550 °C. The stacked layers selenized at 550 °C reveal a uniform distribution of void-free dense grains (~ 0.7 μm). Optical and electrical studies of selenized Cu(In,Al)Se 2 films at 550 °C show a direct band gap of 1.22 eV with a higher hole mobility of 14.0 cm 2 /V-s. The heterojunction solar cell of p -Cu(In,Al)Se 2 / n -CuAlSe 2 was numerically simulated using SCAPS-1D software, yielding a high power conversion efficiency ( η ) of 21.01%.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-021-07477-y