Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions
In this paper, we use basic asymptotic analysis to establish some uniform asymptotic formulas for the Fourier coefficients of the inverse of Jacobi theta functions. In particular, we answer and improve some problems suggested and investigated by Bringmann, Manschot, and Dousse. As applications, we e...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2022-03, Vol.57 (3), p.1085-1123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1123 |
---|---|
container_issue | 3 |
container_start_page | 1085 |
container_title | The Ramanujan journal |
container_volume | 57 |
creator | Liu, Zhi-Guo Zhou, Nian Hong |
description | In this paper, we use basic asymptotic analysis to establish some uniform asymptotic formulas for the Fourier coefficients of the inverse of Jacobi theta functions. In particular, we answer and improve some problems suggested and investigated by Bringmann, Manschot, and Dousse. As applications, we establish the asymptotic monotonicity properties for the rank and crank of the integer partitions introduced and investigated by Dyson, Andrews, and Garvan. |
doi_str_mv | 10.1007/s11139-021-00409-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629408630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629408630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-eea3443e1e44cf4357a3251d6744fd7c3257a2597c8a2131785d14f42a7a4e5a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczT_ttk9SrEqFLzYi5cQ0ommtElNskK_vdluwZunmce8NzP8ELpl9J5Rqh4yY0x0hHJGKJW0I-0ZmrBGcdIJKs5rL1pO6oBeoqucN3RwCTVBH6vgXUw7bPJhty-xeIsH3W9NHhpcvgAvYp88JGwjOOeth1Ayju448-EHUoaTLAa7PtjiY8jX6MKZbYabU52i1eLpff5Clm_Pr_PHJbGCdYUAGCGlAAZSWidFo4zgDVvPlJRurWwVyvCmU7Y1nAmm2mbNpJPcKCOhMWKK7sa9-xS_e8hFb-q_oZ7UfMY7SdtZZTBFfHTZFHNO4PQ--Z1JB82oHhjqkaGuDPWRoW5rSIyhXM3hE9Lf6n9Sv5-ydIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629408630</pqid></control><display><type>article</type><title>Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions</title><source>SpringerNature Journals</source><creator>Liu, Zhi-Guo ; Zhou, Nian Hong</creator><creatorcontrib>Liu, Zhi-Guo ; Zhou, Nian Hong</creatorcontrib><description>In this paper, we use basic asymptotic analysis to establish some uniform asymptotic formulas for the Fourier coefficients of the inverse of Jacobi theta functions. In particular, we answer and improve some problems suggested and investigated by Bringmann, Manschot, and Dousse. As applications, we establish the asymptotic monotonicity properties for the rank and crank of the integer partitions introduced and investigated by Dyson, Andrews, and Garvan.</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-021-00409-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic properties ; Combinatorics ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Mathematics ; Mathematics and Statistics ; Number Theory</subject><ispartof>The Ramanujan journal, 2022-03, Vol.57 (3), p.1085-1123</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-eea3443e1e44cf4357a3251d6744fd7c3257a2597c8a2131785d14f42a7a4e5a3</citedby><cites>FETCH-LOGICAL-c319t-eea3443e1e44cf4357a3251d6744fd7c3257a2597c8a2131785d14f42a7a4e5a3</cites><orcidid>0000-0003-2889-5312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11139-021-00409-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11139-021-00409-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Zhi-Guo</creatorcontrib><creatorcontrib>Zhou, Nian Hong</creatorcontrib><title>Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>In this paper, we use basic asymptotic analysis to establish some uniform asymptotic formulas for the Fourier coefficients of the inverse of Jacobi theta functions. In particular, we answer and improve some problems suggested and investigated by Bringmann, Manschot, and Dousse. As applications, we establish the asymptotic monotonicity properties for the rank and crank of the integer partitions introduced and investigated by Dyson, Andrews, and Garvan.</description><subject>Asymptotic properties</subject><subject>Combinatorics</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczT_ttk9SrEqFLzYi5cQ0ommtElNskK_vdluwZunmce8NzP8ELpl9J5Rqh4yY0x0hHJGKJW0I-0ZmrBGcdIJKs5rL1pO6oBeoqucN3RwCTVBH6vgXUw7bPJhty-xeIsH3W9NHhpcvgAvYp88JGwjOOeth1Ayju448-EHUoaTLAa7PtjiY8jX6MKZbYabU52i1eLpff5Clm_Pr_PHJbGCdYUAGCGlAAZSWidFo4zgDVvPlJRurWwVyvCmU7Y1nAmm2mbNpJPcKCOhMWKK7sa9-xS_e8hFb-q_oZ7UfMY7SdtZZTBFfHTZFHNO4PQ--Z1JB82oHhjqkaGuDPWRoW5rSIyhXM3hE9Lf6n9Sv5-ydIU</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Liu, Zhi-Guo</creator><creator>Zhou, Nian Hong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2889-5312</orcidid></search><sort><creationdate>20220301</creationdate><title>Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions</title><author>Liu, Zhi-Guo ; Zhou, Nian Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-eea3443e1e44cf4357a3251d6744fd7c3257a2597c8a2131785d14f42a7a4e5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic properties</topic><topic>Combinatorics</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhi-Guo</creatorcontrib><creatorcontrib>Zhou, Nian Hong</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhi-Guo</au><au>Zhou, Nian Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>57</volume><issue>3</issue><spage>1085</spage><epage>1123</epage><pages>1085-1123</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>In this paper, we use basic asymptotic analysis to establish some uniform asymptotic formulas for the Fourier coefficients of the inverse of Jacobi theta functions. In particular, we answer and improve some problems suggested and investigated by Bringmann, Manschot, and Dousse. As applications, we establish the asymptotic monotonicity properties for the rank and crank of the integer partitions introduced and investigated by Dyson, Andrews, and Garvan.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-021-00409-8</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0003-2889-5312</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-4090 |
ispartof | The Ramanujan journal, 2022-03, Vol.57 (3), p.1085-1123 |
issn | 1382-4090 1572-9303 |
language | eng |
recordid | cdi_proquest_journals_2629408630 |
source | SpringerNature Journals |
subjects | Asymptotic properties Combinatorics Field Theory and Polynomials Fourier Analysis Functions of a Complex Variable Mathematics Mathematics and Statistics Number Theory |
title | Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20asymptotic%20formulas%20for%20the%20Fourier%20coefficients%20of%20the%20inverse%20of%20theta%20functions&rft.jtitle=The%20Ramanujan%20journal&rft.au=Liu,%20Zhi-Guo&rft.date=2022-03-01&rft.volume=57&rft.issue=3&rft.spage=1085&rft.epage=1123&rft.pages=1085-1123&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-021-00409-8&rft_dat=%3Cproquest_cross%3E2629408630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629408630&rft_id=info:pmid/&rfr_iscdi=true |