Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions

In this paper, we use basic asymptotic analysis to establish some uniform asymptotic formulas for the Fourier coefficients of the inverse of Jacobi theta functions. In particular, we answer and improve some problems suggested and investigated by Bringmann, Manschot, and Dousse. As applications, we e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2022-03, Vol.57 (3), p.1085-1123
Hauptverfasser: Liu, Zhi-Guo, Zhou, Nian Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1123
container_issue 3
container_start_page 1085
container_title The Ramanujan journal
container_volume 57
creator Liu, Zhi-Guo
Zhou, Nian Hong
description In this paper, we use basic asymptotic analysis to establish some uniform asymptotic formulas for the Fourier coefficients of the inverse of Jacobi theta functions. In particular, we answer and improve some problems suggested and investigated by Bringmann, Manschot, and Dousse. As applications, we establish the asymptotic monotonicity properties for the rank and crank of the integer partitions introduced and investigated by Dyson, Andrews, and Garvan.
doi_str_mv 10.1007/s11139-021-00409-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629408630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629408630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-eea3443e1e44cf4357a3251d6744fd7c3257a2597c8a2131785d14f42a7a4e5a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczT_ttk9SrEqFLzYi5cQ0ommtElNskK_vdluwZunmce8NzP8ELpl9J5Rqh4yY0x0hHJGKJW0I-0ZmrBGcdIJKs5rL1pO6oBeoqucN3RwCTVBH6vgXUw7bPJhty-xeIsH3W9NHhpcvgAvYp88JGwjOOeth1Ayju448-EHUoaTLAa7PtjiY8jX6MKZbYabU52i1eLpff5Clm_Pr_PHJbGCdYUAGCGlAAZSWidFo4zgDVvPlJRurWwVyvCmU7Y1nAmm2mbNpJPcKCOhMWKK7sa9-xS_e8hFb-q_oZ7UfMY7SdtZZTBFfHTZFHNO4PQ--Z1JB82oHhjqkaGuDPWRoW5rSIyhXM3hE9Lf6n9Sv5-ydIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629408630</pqid></control><display><type>article</type><title>Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions</title><source>SpringerNature Journals</source><creator>Liu, Zhi-Guo ; Zhou, Nian Hong</creator><creatorcontrib>Liu, Zhi-Guo ; Zhou, Nian Hong</creatorcontrib><description>In this paper, we use basic asymptotic analysis to establish some uniform asymptotic formulas for the Fourier coefficients of the inverse of Jacobi theta functions. In particular, we answer and improve some problems suggested and investigated by Bringmann, Manschot, and Dousse. As applications, we establish the asymptotic monotonicity properties for the rank and crank of the integer partitions introduced and investigated by Dyson, Andrews, and Garvan.</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-021-00409-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic properties ; Combinatorics ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Mathematics ; Mathematics and Statistics ; Number Theory</subject><ispartof>The Ramanujan journal, 2022-03, Vol.57 (3), p.1085-1123</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-eea3443e1e44cf4357a3251d6744fd7c3257a2597c8a2131785d14f42a7a4e5a3</citedby><cites>FETCH-LOGICAL-c319t-eea3443e1e44cf4357a3251d6744fd7c3257a2597c8a2131785d14f42a7a4e5a3</cites><orcidid>0000-0003-2889-5312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11139-021-00409-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11139-021-00409-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Zhi-Guo</creatorcontrib><creatorcontrib>Zhou, Nian Hong</creatorcontrib><title>Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>In this paper, we use basic asymptotic analysis to establish some uniform asymptotic formulas for the Fourier coefficients of the inverse of Jacobi theta functions. In particular, we answer and improve some problems suggested and investigated by Bringmann, Manschot, and Dousse. As applications, we establish the asymptotic monotonicity properties for the rank and crank of the integer partitions introduced and investigated by Dyson, Andrews, and Garvan.</description><subject>Asymptotic properties</subject><subject>Combinatorics</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczT_ttk9SrEqFLzYi5cQ0ommtElNskK_vdluwZunmce8NzP8ELpl9J5Rqh4yY0x0hHJGKJW0I-0ZmrBGcdIJKs5rL1pO6oBeoqucN3RwCTVBH6vgXUw7bPJhty-xeIsH3W9NHhpcvgAvYp88JGwjOOeth1Ayju448-EHUoaTLAa7PtjiY8jX6MKZbYabU52i1eLpff5Clm_Pr_PHJbGCdYUAGCGlAAZSWidFo4zgDVvPlJRurWwVyvCmU7Y1nAmm2mbNpJPcKCOhMWKK7sa9-xS_e8hFb-q_oZ7UfMY7SdtZZTBFfHTZFHNO4PQ--Z1JB82oHhjqkaGuDPWRoW5rSIyhXM3hE9Lf6n9Sv5-ydIU</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Liu, Zhi-Guo</creator><creator>Zhou, Nian Hong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2889-5312</orcidid></search><sort><creationdate>20220301</creationdate><title>Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions</title><author>Liu, Zhi-Guo ; Zhou, Nian Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-eea3443e1e44cf4357a3251d6744fd7c3257a2597c8a2131785d14f42a7a4e5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic properties</topic><topic>Combinatorics</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhi-Guo</creatorcontrib><creatorcontrib>Zhou, Nian Hong</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhi-Guo</au><au>Zhou, Nian Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>57</volume><issue>3</issue><spage>1085</spage><epage>1123</epage><pages>1085-1123</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>In this paper, we use basic asymptotic analysis to establish some uniform asymptotic formulas for the Fourier coefficients of the inverse of Jacobi theta functions. In particular, we answer and improve some problems suggested and investigated by Bringmann, Manschot, and Dousse. As applications, we establish the asymptotic monotonicity properties for the rank and crank of the integer partitions introduced and investigated by Dyson, Andrews, and Garvan.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-021-00409-8</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0003-2889-5312</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-4090
ispartof The Ramanujan journal, 2022-03, Vol.57 (3), p.1085-1123
issn 1382-4090
1572-9303
language eng
recordid cdi_proquest_journals_2629408630
source SpringerNature Journals
subjects Asymptotic properties
Combinatorics
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Number Theory
title Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20asymptotic%20formulas%20for%20the%20Fourier%20coefficients%20of%20the%20inverse%20of%20theta%20functions&rft.jtitle=The%20Ramanujan%20journal&rft.au=Liu,%20Zhi-Guo&rft.date=2022-03-01&rft.volume=57&rft.issue=3&rft.spage=1085&rft.epage=1123&rft.pages=1085-1123&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-021-00409-8&rft_dat=%3Cproquest_cross%3E2629408630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629408630&rft_id=info:pmid/&rfr_iscdi=true