Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions

In this paper, we use basic asymptotic analysis to establish some uniform asymptotic formulas for the Fourier coefficients of the inverse of Jacobi theta functions. In particular, we answer and improve some problems suggested and investigated by Bringmann, Manschot, and Dousse. As applications, we e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2022-03, Vol.57 (3), p.1085-1123
Hauptverfasser: Liu, Zhi-Guo, Zhou, Nian Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we use basic asymptotic analysis to establish some uniform asymptotic formulas for the Fourier coefficients of the inverse of Jacobi theta functions. In particular, we answer and improve some problems suggested and investigated by Bringmann, Manschot, and Dousse. As applications, we establish the asymptotic monotonicity properties for the rank and crank of the integer partitions introduced and investigated by Dyson, Andrews, and Garvan.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-021-00409-8