Subharmonic functions, conformal metrics, and CAT(0)

We present an analytical proof that certain natural metric universal covers are Hadamard metric spaces. If ρ d s induces a complete distance d on a plane domain Ω , and ρ = φ ∘ u where u is (locally Lipschitz and) subharmonic in Ω , φ is positive and increasing on an interval containing u ( Ω ) with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex Analysis and its Synergies 2022-03, Vol.8 (1), Article 6
Hauptverfasser: Herron, David A., Martin, Gaven J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an analytical proof that certain natural metric universal covers are Hadamard metric spaces. If ρ d s induces a complete distance d on a plane domain Ω , and ρ = φ ∘ u where u is (locally Lipschitz and) subharmonic in Ω , φ is positive and increasing on an interval containing u ( Ω ) with log φ convex, then ( Ω , d ) has a universal cover ( Ω ~ , d ~ ) which is a Hadamard metric space (with geodesics that have Lipschitz continuous first derivatives).
ISSN:2524-7581
2197-120X
DOI:10.1007/s40627-021-00089-6