Subharmonic functions, conformal metrics, and CAT(0)
We present an analytical proof that certain natural metric universal covers are Hadamard metric spaces. If ρ d s induces a complete distance d on a plane domain Ω , and ρ = φ ∘ u where u is (locally Lipschitz and) subharmonic in Ω , φ is positive and increasing on an interval containing u ( Ω ) with...
Gespeichert in:
Veröffentlicht in: | Complex Analysis and its Synergies 2022-03, Vol.8 (1), Article 6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an analytical proof that certain natural metric universal covers are Hadamard metric spaces. If
ρ
d
s
induces a complete distance
d
on a plane domain
Ω
, and
ρ
=
φ
∘
u
where
u
is (locally Lipschitz and) subharmonic in
Ω
,
φ
is positive and increasing on an interval containing
u
(
Ω
)
with
log
φ
convex, then
(
Ω
,
d
)
has a universal cover
(
Ω
~
,
d
~
)
which is a Hadamard metric space (with geodesics that have Lipschitz continuous first derivatives). |
---|---|
ISSN: | 2524-7581 2197-120X |
DOI: | 10.1007/s40627-021-00089-6 |