Auxiliary Power Supplies for High-Power Converter Submodules: State of the Art and Future Prospects

Recent developments in medium-voltage (MV) silicon and silicon carbide (SiC) power semiconductor devices are challenging state-of-the-art converter and auxiliary power supply (APS) designs. The APS is an important converter component, which energizes the gate-drive units and, therefore, has an influ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2022-06, Vol.37 (6), p.6807-6820
Hauptverfasser: Heinig, Stefanie, Jacobs, Keijo, Ilves, Kalle, Norrga, Staffan, Nee, Hans-Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent developments in medium-voltage (MV) silicon and silicon carbide (SiC) power semiconductor devices are challenging state-of-the-art converter and auxiliary power supply (APS) designs. The APS is an important converter component, which energizes the gate-drive units and, therefore, has an influence on the overall reliability and efficiency of the converter system. There has, however, been comparably little research on how the APS of high-power converter submodules can be realized, in particular, for high-voltage applications. New, or improved, solutions may build on state-of-the-art topologies in the near future, but utilize MV SiC technology in the APS circuit itself to enable improved efficiency, reliability, simplicity, and compactness. Externally-fed APS concepts could provide several further advantages. Their various benefits on converter and system level may enable them to be a competitive solution for future APS concepts. Especially, light-based power supply systems are considered most useful since they offer extreme voltage isolation capability and immunity to electromagnetic interference. This article presents a review of the wide range of solutions for APSs, possible implementation options, and the most important design considerations. The different solutions are evaluated in a qualitative fashion, providing an overview of available APS concepts with regard to the requirements for high-power converter applications.
ISSN:0885-8993
1941-0107
1941-0107
DOI:10.1109/TPEL.2021.3136149