A subspace-accelerated method for solving nonlinear thermoacoustic eigenvalue problems
We propose a method to accelerate the solution of 3D FEM-discretized nonlinear eigenvalue problems by drastically reducing the problem dimension. Our method yields a reduced order model (ROM) via a projection onto a suitable subspace, with eigenpairs identical to the full problem in a region of the...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2022-03, Vol.520, p.116553, Article 116553 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a method to accelerate the solution of 3D FEM-discretized nonlinear eigenvalue problems by drastically reducing the problem dimension. Our method yields a reduced order model (ROM) via a projection onto a suitable subspace, with eigenpairs identical to the full problem in a region of the complex plane. The subspace is automatically constructed by solving the full problem at a few random points inside the region of interest. The method requires minimal user input and, although exemplified for with a thermoacoustic application, readily generalizes to applications dealing with other vibrational problems. |
---|---|
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2021.116553 |