Neural-Network Prediction of the Low-Temperature Fatigue Strength of Metals

A smart system for predicting the fatigue strength of metals over a broad temperature range is developed on the basis of a specially trained neural network. The system can predict the number of loading cycles to failure and also the onset of fatigue-crack formation and the rate of crack growth in di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian engineering research 2022-02, Vol.42 (2), p.100-103
Hauptverfasser: Kabaldin, Yu. G., Anosov, M. S., Shatagin, D. A., Kiselev, A. V., Kolchin, P. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A smart system for predicting the fatigue strength of metals over a broad temperature range is developed on the basis of a specially trained neural network. The system can predict the number of loading cycles to failure and also the onset of fatigue-crack formation and the rate of crack growth in different test conditions, including low temperatures.
ISSN:1068-798X
1934-8088
DOI:10.3103/S1068798X22020095