Neural-Network Prediction of the Low-Temperature Fatigue Strength of Metals
A smart system for predicting the fatigue strength of metals over a broad temperature range is developed on the basis of a specially trained neural network. The system can predict the number of loading cycles to failure and also the onset of fatigue-crack formation and the rate of crack growth in di...
Gespeichert in:
Veröffentlicht in: | Russian engineering research 2022-02, Vol.42 (2), p.100-103 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A smart system for predicting the fatigue strength of metals over a broad temperature range is developed on the basis of a specially trained neural network. The system can predict the number of loading cycles to failure and also the onset of fatigue-crack formation and the rate of crack growth in different test conditions, including low temperatures. |
---|---|
ISSN: | 1068-798X 1934-8088 |
DOI: | 10.3103/S1068798X22020095 |