The length of the shortest closed geodesic on positively curved 2-spheres

We show that the shortest closed geodesic on a 2-sphere with non-negative curvature has length bounded above by three times the diameter. We prove a new isoperimetric inequality for 2-spheres with pinched curvature; this allows us to improve our bound on the length of the shortest closed geodesic in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-03, Vol.300 (3), p.2519-2531
Hauptverfasser: Adelstein, Ian, Vargas Pallete, Franco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the shortest closed geodesic on a 2-sphere with non-negative curvature has length bounded above by three times the diameter. We prove a new isoperimetric inequality for 2-spheres with pinched curvature; this allows us to improve our bound on the length of the shortest closed geodesic in the pinched curvature setting.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-021-02875-8