The length of the shortest closed geodesic on positively curved 2-spheres
We show that the shortest closed geodesic on a 2-sphere with non-negative curvature has length bounded above by three times the diameter. We prove a new isoperimetric inequality for 2-spheres with pinched curvature; this allows us to improve our bound on the length of the shortest closed geodesic in...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2022-03, Vol.300 (3), p.2519-2531 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the shortest closed geodesic on a 2-sphere with non-negative curvature has length bounded above by three times the diameter. We prove a new isoperimetric inequality for 2-spheres with pinched curvature; this allows us to improve our bound on the length of the shortest closed geodesic in the pinched curvature setting. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-021-02875-8 |