Rational points on conic bundles over elliptic curves

We study rational points on conic bundles over elliptic curves with positive rank over a number field. We show that the étale Brauer–Manin obstruction is insufficient to explain failures of the Hasse principle for such varieties. We then further consider properties of the distribution of the set of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-03, Vol.300 (3), p.2429-2449
Hauptverfasser: Berg, Jennifer, Nakahara, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study rational points on conic bundles over elliptic curves with positive rank over a number field. We show that the étale Brauer–Manin obstruction is insufficient to explain failures of the Hasse principle for such varieties. We then further consider properties of the distribution of the set of rational points with respect to its image in the rational points of the elliptic curve. In the process, we prove results on a local-to-global principle for torsion points on elliptic curves over Q .
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-021-02870-z