Rational points on conic bundles over elliptic curves
We study rational points on conic bundles over elliptic curves with positive rank over a number field. We show that the étale Brauer–Manin obstruction is insufficient to explain failures of the Hasse principle for such varieties. We then further consider properties of the distribution of the set of...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2022-03, Vol.300 (3), p.2429-2449 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study rational points on conic bundles over elliptic curves with positive rank over a number field. We show that the étale Brauer–Manin obstruction is insufficient to explain failures of the Hasse principle for such varieties. We then further consider properties of the distribution of the set of rational points with respect to its image in the rational points of the elliptic curve. In the process, we prove results on a local-to-global principle for torsion points on elliptic curves over
Q
. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-021-02870-z |