Depth-integrated wave–current models. Part 2. Current with an arbitrary profile

The depth-integrated wave–current models developed by Yang & Liu (J. Fluid Mech., vol. 883, 2020, A4) are extended to investigate currents with an arbitrary vertical profile in the water column. In the present models, horizontal velocities are decomposed into two components. The first part deduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2022-04, Vol.936, Article A31
Hauptverfasser: Yang, Zhengtong, Liu, Philip L.-F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The depth-integrated wave–current models developed by Yang & Liu (J. Fluid Mech., vol. 883, 2020, A4) are extended to investigate currents with an arbitrary vertical profile in the water column. In the present models, horizontal velocities are decomposed into two components. The first part deduces the prescribed current velocity when waves are absent. The second part is approximated in a polynomial form. The resulting depth-integrated wave–current models are obtained by applying the weighted residual method. In the absence of currents, the present models are identical to those in Yang & Liu (J. Fluid Mech., vol. 883, 2020, A4) and are validated with several three-dimensional (3D) benchmark laboratory experiments. A theoretical analysis is conducted to study the frequency dispersion relation of linear waves on currents with an exponential vertical profile and the results are compared with numerical solutions of the Rayleigh equation. Using the new models, validations and investigations are then conducted for periodic waves and solitary waves on currents with an arbitrary profile in one-dimensional horizontal (1DH) space. Furthermore, the new models are applied to wave–current interactions in two-dimensional horizontal (2DH) space. Two scenarios are considered: (1) wave propagation over a vortex-ring-like current and (2) obliquely incident wave propagation over a 3D sheared current on a varying bathymetry. The vertical and horizontal shear of the current have significant effects on modifying various wave properties, which are well captured by the present models. However, the time-averaged velocity under wave–current interaction shows small differences with the prescribed current velocity, except in the region between the wave trough and crest.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2022.42