Hierarchical motion planning at the acceleration level based on task priority matrix for space robot

This paper addresses the motion planning problem for a free-floating redundant space robotic system at the acceleration level considering the strict task priority. The robot is primarily expected to track the prescribed trajectory together with various other tasks, e.g., regulating the base attitude...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2022-02, Vol.107 (3), p.2309-2326
Hauptverfasser: Cai, Peng, Yue, Xiaokui, Wang, Mingming, Cui, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the motion planning problem for a free-floating redundant space robotic system at the acceleration level considering the strict task priority. The robot is primarily expected to track the prescribed trajectory together with various other tasks, e.g., regulating the base attitude, avoiding collision with obstacles and respecting the joint constraints. Then, the planning problem is reformulated as strictly hierarchical quadratic least-square problems containing both equality and inequality and solved with the proposed task-priority algorithm based on the combination of the task priority matrix method and the active-set method. Besides, a novel velocity-related dynamic potential function is also designed to obtain a smoother motion when approaching obstacles, and further relaxed to the one-dimensional inequality to take full advantage of the robot capacity and dexterity. Simulation results have validated the proposed motion planning strategy imposed on the dual-arm space robot.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-021-07038-2