Conducting Flat Drops in a Confining Potential

We study a geometric variational problem arising from modeling two-dimensional charged drops of a perfectly conducting liquid in the presence of an external potential. We characterize the semicontinuous envelope of the energy in terms of a parameter measuring the relative strength of the Coulomb int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2022-03, Vol.243 (3), p.1773-1810
Hauptverfasser: Muratov, Cyrill B., Novaga, Matteo, Ruffini, Berardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a geometric variational problem arising from modeling two-dimensional charged drops of a perfectly conducting liquid in the presence of an external potential. We characterize the semicontinuous envelope of the energy in terms of a parameter measuring the relative strength of the Coulomb interaction. As a consequence, when the potential is confining and the Coulomb repulsion strength is below a critical value, we show existence and regularity estimates for volume-constrained minimizers. We also derive the Euler–Lagrange equation satisfied by regular critical points, expressing the first variation of the Coulombic energy in terms of the normal 1 2 -derivative of the capacitary potential.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-021-01738-0