Conducting Flat Drops in a Confining Potential
We study a geometric variational problem arising from modeling two-dimensional charged drops of a perfectly conducting liquid in the presence of an external potential. We characterize the semicontinuous envelope of the energy in terms of a parameter measuring the relative strength of the Coulomb int...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2022-03, Vol.243 (3), p.1773-1810 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a geometric variational problem arising from modeling two-dimensional charged drops of a perfectly conducting liquid in the presence of an external potential. We characterize the semicontinuous envelope of the energy in terms of a parameter measuring the relative strength of the Coulomb interaction. As a consequence, when the potential is confining and the Coulomb repulsion strength is below a critical value, we show existence and regularity estimates for volume-constrained minimizers. We also derive the Euler–Lagrange equation satisfied by regular critical points, expressing the first variation of the Coulombic energy in terms of the normal
1
2
-derivative of the capacitary potential. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-021-01738-0 |