Improved interactive color visualization approach for hyperspectral images

Hyperspectral images (HSIs) have become increasingly prominent as they can maintain the subtle spectral differences of the imaged objects. Designing approaches and tools for analyzing HSIs presents a unique set of challenges due to their high-dimensional characteristics. An improved color visualizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information visualization 2022-04, Vol.21 (2), p.153-165
Hauptverfasser: Yu, Haijun, Li, Shengyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperspectral images (HSIs) have become increasingly prominent as they can maintain the subtle spectral differences of the imaged objects. Designing approaches and tools for analyzing HSIs presents a unique set of challenges due to their high-dimensional characteristics. An improved color visualization approach is proposed in this article to achieve communication between users and HSIs in the field of remote sensing. Under the real-time interactive control and color visualization, this approach can help users intuitively obtain the rich information hidden in original HSIs. Using the dimensionality reduction (DR) method based on band selection, high-dimensional HSIs are reduced to low-dimensional images. Through drop-down boxes, users can freely specify images that participate in the combination of RGB channels of the output image. Users can then interactively and independently set the fusion coefficient of each image within an interface based on concentric circles. At the same time, the output image will be calculated and visualized in real time, and the information it reflects will also be different. In this approach, channel combination and fusion coefficient setting are two independent processes, which allows users to interact more flexibly according to their needs. Furthermore, this approach is also applicable for interactive visualization of other types of multi-layer data.
ISSN:1473-8716
1473-8724
DOI:10.1177/14738716211048142