Estimating the Parameters of Truncated Gutenberg–Richter Distribution

—In the framework of the truncated Gutenberg–Richter distribution model, the problem of estimating the maximum possible regional magnitude M is considered. A new estimator of parameter M is proposed based on the bias-corrected maximum likelihood estimate, for which an exact formula is derived in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Physics of the solid earth 2022-02, Vol.58 (1), p.80-88
1. Verfasser: Pisarenko, V. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:—In the framework of the truncated Gutenberg–Richter distribution model, the problem of estimating the maximum possible regional magnitude M is considered. A new estimator of parameter M is proposed based on the bias-corrected maximum likelihood estimate, for which an exact formula is derived in the form of a finite sum of some functions of sample maximum μ n . The new estimate is compared with some known estimates of parameter M and its fairly high efficiency is shown. Using a similar technique, an estimate is obtained of quantile Q T ( q ) of the maximum earthquake magnitude in a given future time interval T . It is shown that the distribution density of magnitudes is significantly distorted at the ends of the magnitude range when using the model of magnitude perturbation by random errors.
ISSN:1069-3513
1555-6506
DOI:10.1134/S1069351322010074