Estimating the Parameters of Truncated Gutenberg–Richter Distribution
—In the framework of the truncated Gutenberg–Richter distribution model, the problem of estimating the maximum possible regional magnitude M is considered. A new estimator of parameter M is proposed based on the bias-corrected maximum likelihood estimate, for which an exact formula is derived in the...
Gespeichert in:
Veröffentlicht in: | Izvestiya. Physics of the solid earth 2022-02, Vol.58 (1), p.80-88 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | —In the framework of the truncated Gutenberg–Richter distribution model, the problem of estimating the maximum possible regional magnitude
M
is considered. A new estimator of parameter
M
is proposed based on the bias-corrected maximum likelihood estimate, for which an exact formula is derived in the form of a finite sum of some functions of sample maximum μ
n
. The new estimate is compared with some known estimates of parameter
M
and its fairly high efficiency is shown. Using a similar technique, an estimate is obtained of quantile
Q
T
(
q
) of the maximum earthquake magnitude in a given future time interval
T
. It is shown that the distribution density of magnitudes is significantly distorted at the ends of the magnitude range when using the model of magnitude perturbation by random errors. |
---|---|
ISSN: | 1069-3513 1555-6506 |
DOI: | 10.1134/S1069351322010074 |