Performance of 5G Trials for Industrial Automation

Wireless- and 5G-enabled industrial automation is expected to include a plethora of different applications with a wide variety of requirements. In this article, evaluations are undertaken for the deployment of 5G in realistic industrial production environments with realistic deployment settings. Bot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-02, Vol.11 (3), p.412
Hauptverfasser: Ansari, Junaid, Andersson, Christian, de Bruin, Peter, Farkas, János, Grosjean, Leefke, Sachs, Joachim, Torsner, Johan, Varga, Balázs, Harutyunyan, Davit, König, Niels, Schmitt, Robert H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wireless- and 5G-enabled industrial automation is expected to include a plethora of different applications with a wide variety of requirements. In this article, evaluations are undertaken for the deployment of 5G in realistic industrial production environments with realistic deployment settings. Both deployments using commercial 5G systems and a 5G prototype system including pre-commercial and standard compliant URLLC functionality have been investigated. Systematic latency and reliability measurements were performed, over the air and in live networks, for different packet sizes, different devices, and networks with different capabilities (at different sites) to characterize the expected performance. The results indicate that today’s 5G latency performance significantly depends on packet size, transmission direction (uplink or downlink), and network configuration as well as on the end device’s design and capabilities. Our over-the-air measurements also empirically show that 5G technology and future networks have the capability of providing one-way latency of around 1 ms in both uplink and downlink for the various packet sizes tested. It is concluded that the requirements for very low latencies can be achieved with high reliability guarantees, as required in some of the most stringent industrial IoT applications.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11030412