Ultrawideband Cross-Polarization Converter Using Anisotropic Reflective Metasurface
Broadband metasurface-based devices are essential and indispensable in modern wireless communication systems. This paper presents an ultra−wideband and wide incident angle reflective cross−polarization converter metasurface. The unit cell of the proposed structure is a 45° rotated anisotropic meta−s...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-02, Vol.11 (3), p.487 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Broadband metasurface-based devices are essential and indispensable in modern wireless communication systems. This paper presents an ultra−wideband and wide incident angle reflective cross−polarization converter metasurface. The unit cell of the proposed structure is a 45° rotated anisotropic meta−sheet developed by cutting the rhombus−shaped patch from the central part of the square patch. The unit cell’s top structure and ground blocking sheet are made of copper, whereas a dielectric substrate (FR−4) is used as an intermediate spacer between them. The unit cell thickness is minimal compared to the operating wavelength (1/14λ∘, where λ∘ is the wavelength of the starting frequency of 13 GHz of the operating band). The proposed structure efficiently converts linearly polarized waves into their orthogonal component, with a polarization conversion ratio of (PCR > 90%) over a broad frequency spectrum of 13 GHz to 26 GHz. The physical origin of polarization conversion is also depicted using surface current distribution plots. An ultra−wideband and highly efficient polarization conversion (above 90%) is achieved with the help of strong electromagnetic resonance coupling between the upper and lower layer of the metasurface. This kind of ultra−wideband polarization conversion metasurface can be employed in satellite communication, radar cross−section reduction, and navigation systems. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics11030487 |