Growth of Sobolev norms in quasi integrable quantum systems

We prove an abstract result giving a \(\langle t \rangle^\varepsilon\) upper bound on the growth of the Sobolev norms of a time-dependent Schr\"odinger equation of the form \({i} \dot \psi = H_0 \psi + V (t)\psi\). Here \(H_0\) is assumed to be the Hamiltonian of a steep quantum integrable syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Bambusi, Dario, Langella, Beatrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove an abstract result giving a \(\langle t \rangle^\varepsilon\) upper bound on the growth of the Sobolev norms of a time-dependent Schr\"odinger equation of the form \({i} \dot \psi = H_0 \psi + V (t)\psi\). Here \(H_0\) is assumed to be the Hamiltonian of a steep quantum integrable system and to be a pseudodifferential operator of order \({\tt d} > 1\); \(V (t)\) is a time-dependent family of pseudodifferential operators, unbounded, but of order \({\tt b} < {\tt d}\). The abstract theorem is then applied to perturbations of the quantum anharmonic oscillators in dimension 2 and to perturbations of the Laplacian on a manifold with integrable geodesic flow, and in particular Zoll manifolds, rotation invariant surfaces and Lie groups. The proof is based on a quantum version of the proof of the classical Nekhoroshev theorem.
ISSN:2331-8422