Outer approximations of classical multi-network correlations

We propose a framework, named the postselected inflation framework, to obtain converging outer approximations of the sets of probability distributions that are compatible with classical multi-network scenarios. Here, a network is a bilayer directed acyclic graph with a layer of sources of classical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-02
1. Verfasser: Gitton, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gitton, Victor
description We propose a framework, named the postselected inflation framework, to obtain converging outer approximations of the sets of probability distributions that are compatible with classical multi-network scenarios. Here, a network is a bilayer directed acyclic graph with a layer of sources of classical randomness, a layer of agents, and edges specifying the connectivity between the agents and the sources. A multi-network scenario is a list of such networks, together with a specification of subsets of agents using the same strategy. An outer approximation of the set of multi-network correlations provides means to certify the infeasibility of a list of agent outcome distributions. We furthermore show that the postselected inflation framework is mathematically equivalent to the standard inflation framework: in that respect, our results allow to gain further insights into the convergence proof of the inflation hierarchy of Navascuès and Wolfe [arXiv:1707.06476], and extend it to the case of multi-network scenarios.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2627264997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627264997</sourcerecordid><originalsourceid>FETCH-proquest_journals_26272649973</originalsourceid><addsrcrecordid>eNqNjLEKwjAUAIMgWLT_EHAOxJc2seAmipuLewklhbRpUvMS9PMt6Ac43XDHrUgBQhzYsQLYkBJx4JyDVFDXoiCne04mUj3PMbztpJMNHmnoaec0ou20o1N2yTJv0ivEkXYhRuO-3Y6se-3QlD9uyf56eZxvbJk9s8HUDiFHv6gWJCiQVdMo8V_1Ack_ONU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627264997</pqid></control><display><type>article</type><title>Outer approximations of classical multi-network correlations</title><source>Free E- Journals</source><creator>Gitton, Victor</creator><creatorcontrib>Gitton, Victor</creatorcontrib><description>We propose a framework, named the postselected inflation framework, to obtain converging outer approximations of the sets of probability distributions that are compatible with classical multi-network scenarios. Here, a network is a bilayer directed acyclic graph with a layer of sources of classical randomness, a layer of agents, and edges specifying the connectivity between the agents and the sources. A multi-network scenario is a list of such networks, together with a specification of subsets of agents using the same strategy. An outer approximation of the set of multi-network correlations provides means to certify the infeasibility of a list of agent outcome distributions. We furthermore show that the postselected inflation framework is mathematically equivalent to the standard inflation framework: in that respect, our results allow to gain further insights into the convergence proof of the inflation hierarchy of Navascuès and Wolfe [arXiv:1707.06476], and extend it to the case of multi-network scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Convergence</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gitton, Victor</creatorcontrib><title>Outer approximations of classical multi-network correlations</title><title>arXiv.org</title><description>We propose a framework, named the postselected inflation framework, to obtain converging outer approximations of the sets of probability distributions that are compatible with classical multi-network scenarios. Here, a network is a bilayer directed acyclic graph with a layer of sources of classical randomness, a layer of agents, and edges specifying the connectivity between the agents and the sources. A multi-network scenario is a list of such networks, together with a specification of subsets of agents using the same strategy. An outer approximation of the set of multi-network correlations provides means to certify the infeasibility of a list of agent outcome distributions. We furthermore show that the postselected inflation framework is mathematically equivalent to the standard inflation framework: in that respect, our results allow to gain further insights into the convergence proof of the inflation hierarchy of Navascuès and Wolfe [arXiv:1707.06476], and extend it to the case of multi-network scenarios.</description><subject>Approximation</subject><subject>Convergence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjLEKwjAUAIMgWLT_EHAOxJc2seAmipuLewklhbRpUvMS9PMt6Ac43XDHrUgBQhzYsQLYkBJx4JyDVFDXoiCne04mUj3PMbztpJMNHmnoaec0ou20o1N2yTJv0ivEkXYhRuO-3Y6se-3QlD9uyf56eZxvbJk9s8HUDiFHv6gWJCiQVdMo8V_1Ack_ONU</recordid><startdate>20220208</startdate><enddate>20220208</enddate><creator>Gitton, Victor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220208</creationdate><title>Outer approximations of classical multi-network correlations</title><author>Gitton, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26272649973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Convergence</topic><toplevel>online_resources</toplevel><creatorcontrib>Gitton, Victor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gitton, Victor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Outer approximations of classical multi-network correlations</atitle><jtitle>arXiv.org</jtitle><date>2022-02-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We propose a framework, named the postselected inflation framework, to obtain converging outer approximations of the sets of probability distributions that are compatible with classical multi-network scenarios. Here, a network is a bilayer directed acyclic graph with a layer of sources of classical randomness, a layer of agents, and edges specifying the connectivity between the agents and the sources. A multi-network scenario is a list of such networks, together with a specification of subsets of agents using the same strategy. An outer approximation of the set of multi-network correlations provides means to certify the infeasibility of a list of agent outcome distributions. We furthermore show that the postselected inflation framework is mathematically equivalent to the standard inflation framework: in that respect, our results allow to gain further insights into the convergence proof of the inflation hierarchy of Navascuès and Wolfe [arXiv:1707.06476], and extend it to the case of multi-network scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2627264997
source Free E- Journals
subjects Approximation
Convergence
title Outer approximations of classical multi-network correlations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Outer%20approximations%20of%20classical%20multi-network%20correlations&rft.jtitle=arXiv.org&rft.au=Gitton,%20Victor&rft.date=2022-02-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2627264997%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627264997&rft_id=info:pmid/&rfr_iscdi=true