Outer approximations of classical multi-network correlations

We propose a framework, named the postselected inflation framework, to obtain converging outer approximations of the sets of probability distributions that are compatible with classical multi-network scenarios. Here, a network is a bilayer directed acyclic graph with a layer of sources of classical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-02
1. Verfasser: Gitton, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a framework, named the postselected inflation framework, to obtain converging outer approximations of the sets of probability distributions that are compatible with classical multi-network scenarios. Here, a network is a bilayer directed acyclic graph with a layer of sources of classical randomness, a layer of agents, and edges specifying the connectivity between the agents and the sources. A multi-network scenario is a list of such networks, together with a specification of subsets of agents using the same strategy. An outer approximation of the set of multi-network correlations provides means to certify the infeasibility of a list of agent outcome distributions. We furthermore show that the postselected inflation framework is mathematically equivalent to the standard inflation framework: in that respect, our results allow to gain further insights into the convergence proof of the inflation hierarchy of Navascuès and Wolfe [arXiv:1707.06476], and extend it to the case of multi-network scenarios.
ISSN:2331-8422