Cut‐conditions on sets of multiple‐alternative inferences
I prove that the Boolean Prime Ideal Theorem is equivalent, under some weak set‐theoretic assumptions, to what I will call the Cut‐for‐Formulas to Cut‐for‐Sets Theorem: for a set F and a binary relation ⊢ on P(F)$\mathcal {P}(F)$, if ⊢ is finitary, monotonic, and satisfies cut for formulas, then it...
Gespeichert in:
Veröffentlicht in: | Mathematical logic quarterly 2022-02, Vol.68 (1), p.95-106 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | I prove that the Boolean Prime Ideal Theorem is equivalent, under some weak set‐theoretic assumptions, to what I will call the Cut‐for‐Formulas to Cut‐for‐Sets Theorem: for a set F and a binary relation ⊢ on P(F)$\mathcal {P}(F)$, if ⊢ is finitary, monotonic, and satisfies cut for formulas, then it also satisfies cut for sets. I deduce the CF/CS Theorem from the Ultrafilter Theorem twice; each proof uses a different order‐theoretic variant of the Tukey‐Teichmüller Lemma. I then discuss relationships between various cut‐conditions in the absence of finitariness or of monotonicity. |
---|---|
ISSN: | 0942-5616 1521-3870 |
DOI: | 10.1002/malq.202000032 |