Material classification based on Dual-Energy Micro-CT images by the Gaussian mixture model

This study aimed to implement an unsupervised classification method through the Gaussian mixture model to classify different materials using the scatter diagram of the linear attenuation coefficients acquired from dual-energy micro-CT imaging. This method estimates each cluster's distribution p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2022-02, Vol.17 (2), p.P02001
Hauptverfasser: Mami-Zadeh, H., Solgi, R., Carrier, J.-F., Ghadiri, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to implement an unsupervised classification method through the Gaussian mixture model to classify different materials using the scatter diagram of the linear attenuation coefficients acquired from dual-energy micro-CT imaging. This method estimates each cluster's distribution parameters and performs classification based on the posterior probability with a pre-determined cluster number. Our studies on dual-energy images of a phantom showed that the distribution of linear attenuation coefficient of different materials on the scatter diagram has a Gaussian distribution, and clusters can be classified using model-based clustering. The result of this classification method is related to the actual materials in the phantom, where a specific cluster represents each material. This classification method can be potentially used when the clusters are overlapped and the material is separated with high accuracy.
ISSN:1748-0221
1748-0221
DOI:10.1088/1748-0221/17/02/P02001