Predictions for Gravity-mode Periods and Surface Abundances in Intermediate-mass Dwarfs from Shear Mixing and Radiative Levitation

The treatment of chemical mixing in the radiative envelopes of intermediate-mass stars has hardly been calibrated so far. Recent asteroseismic studies demonstrated that a constant diffusion coefficient in the radiative envelope is not able to explain the periods of trapped gravity modes in the oscil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-02, Vol.925 (2), p.154
Hauptverfasser: Mombarg, Joey S. G., Dotter, Aaron, Rieutord, Michel, Michielsen, Mathias, Van Reeth, Timothy, Aerts, Conny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The treatment of chemical mixing in the radiative envelopes of intermediate-mass stars has hardly been calibrated so far. Recent asteroseismic studies demonstrated that a constant diffusion coefficient in the radiative envelope is not able to explain the periods of trapped gravity modes in the oscillation spectra of γ Doradus pulsators. We present a new generation of MESA stellar models with two major improvements. First, we present a new implementation for computing radiative accelerations and Rosseland mean opacities that requires significantly less CPU time. Second, the inclusion of shear mixing based on rotation profiles computed with the 2D stellar structure code ESTER is considered. We show predictions for the mode periods of these models covering stellar masses from 1.4 to 3.0 M ⊙ across the main sequence, computed for different metallicities. The morphology of the chemical mixing profile resulting from shear mixing in combination with atomic diffusion and radiative levitation does allow for mode trapping, while the diffusion coefficient in the outer envelope is large (>10 6 cm 2 s −1 ). Furthermore, we make predictions for the evolution of surface abundances for which radiative accelerations can be computed. We find that the N/C and C/O abundance ratios correlate with stellar age. We predict that these correlations are observable with precisions ≲ 0.1 dex on these ratios, given that a precise age estimate can be made.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac3dfb