Hodge decompositions for Lie algebroids on manifolds with boundary

We investigate when the Chevalley-Eilenberg differential of a complex Lie algebroid on a manifold with boundary admits a Hodge decomposition. We introduce the concepts of Cauchy-Riemann structures, elliptic and non-elliptic boundary points and Levi-forms, which we use to define the notion of q -conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2022-02, Vol.382 (1-2), p.303-356
1. Verfasser: van der Leer Durán, J. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate when the Chevalley-Eilenberg differential of a complex Lie algebroid on a manifold with boundary admits a Hodge decomposition. We introduce the concepts of Cauchy-Riemann structures, elliptic and non-elliptic boundary points and Levi-forms, which we use to define the notion of q -convexity. We show that the Chevalley-Eilenberg complex of an elliptic, q -convex Lie algebroid admits a Hodge decomposition in degree q . This generalizes the well-known Hodge decompositions for the exterior derivative on real manifolds and the delbar-operator on q -convex complex manifolds. We establish the results in a more general setting, where the differential does not necessarily square to zero and moreover varies in a family, including an analysis of the behaviour on the deformation parameter. As application we give a proof of a classical holomorphic tubular neighbourhood theorem (which implies the Newlander-Nirenberg theorem) based on the Moser trick, and we provide a finite-dimensionality result for certain holomorphic Poisson cohomology groups.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-021-02293-5