Data-Driven Optimal Control via Linear Transfer Operators: A Convex Approach
This paper is concerned with data-driven optimal control of nonlinear systems. We present a convex formulation to the optimal control problem (OCP) with a discounted cost function. We consider OCP with both positive and negative discount factor. The convex approach relies on lifting nonlinear system...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with data-driven optimal control of nonlinear systems. We present a convex formulation to the optimal control problem (OCP) with a discounted cost function. We consider OCP with both positive and negative discount factor. The convex approach relies on lifting nonlinear system dynamics in the space of densities using the linear Perron-Frobenius (P-F) operator. This lifting leads to an infinite-dimensional convex optimization formulation of the optimal control problem. The data-driven approximation of the optimization problem relies on the approximation of the Koopman operator using the polynomial basis function. We write the approximate finite-dimensional optimization problem as a polynomial optimization which is then solved efficiently using a sum-of-squares-based optimization framework. Simulation results are presented to demonstrate the efficacy of the developed data-driven optimal control framework. |
---|---|
ISSN: | 2331-8422 |