A compact dual-polarized co-radiator MIMO antenna for UWB applications

In this research study, a compact dual-polarized co-radiator ultra-wideband (UWB) multiple-input multiple-output (MIMO) antenna with improved impedance bandwidth and isolation is proposed for wireless applications. The designed co-radiator has an overall area of 0.3λo × 0.3λo mm2 (where, λo is free...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of microwave and wireless technologies 2022-03, Vol.14 (2), p.225-238
Hauptverfasser: Kaur, Harleen, Shankar Singh, Hari, Upadhyay, Rahul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research study, a compact dual-polarized co-radiator ultra-wideband (UWB) multiple-input multiple-output (MIMO) antenna with improved impedance bandwidth and isolation is proposed for wireless applications. The designed co-radiator has an overall area of 0.3λo × 0.3λo mm2 (where, λo is free space wavelength corresponding to the lower cut-off frequency, i.e., 3.1 GHz). The proposed resonator comprises of a hybrid geometry which is created with the combinations of a circular-shaped patch, a square, and two rectangular stubs. It is centrally aligned between two 50 Ω micro-strip feed lines that are positioned orthogonal to each other. Further, the modified ground plane is attached with the end-loaded line which provides broadband isolation over entire UWB frequency band. The simulated results of the proposed antenna exhibit wideband characteristics with impedance bandwidth of 3.1–16.9 GHz with minimum isolation of −15 dB. Moreover, all the radiation performance parameters are analyzed and discussed. Some important diversity parameters such as envelope correlation coefficient, mean effective gain, effective diversity gain, and channel capacity loss have also been evaluated. Furthermore, all the measured results of proposed antenna agree well with the simulated results which make the proposed antenna a suitable candidate for UWB-MIMO wireless applications.
ISSN:1759-0787
1759-0795
DOI:10.1017/S1759078721000349