Quantizations of Lie bialgebras, duality involution and oriented graph complexes

We prove that the action of the Grothendieck–Teichmüller group on the genus completed properad of (homotopy) Lie bialgebras commutes with the reversing directions involution of the latter. We also prove that every universal quantization of Lie bialgebras is homotopy equivalent to the one which commu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in mathematical physics 2022-02, Vol.112 (1), Article 13
Hauptverfasser: Merkulov, Sergei, Živković, Marko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the action of the Grothendieck–Teichmüller group on the genus completed properad of (homotopy) Lie bialgebras commutes with the reversing directions involution of the latter. We also prove that every universal quantization of Lie bialgebras is homotopy equivalent to the one which commutes with the duality involution exchanging Lie bracket and Lie cobracket. The proofs are based on a new result in the theory of oriented graph complexes (which can be of independent interest) saying that the involution on an oriented graph complex that changes all directions on edges induces the identity map on its cohomology.
ISSN:0377-9017
1573-0530
DOI:10.1007/s11005-022-01505-6