Expert Intervention Learning

Scalable robot learning from human-robot interaction is critical if robots are to solve a multitude of tasks in the real world. Current approaches to imitation learning suffer from one of two drawbacks. On the one hand, they rely solely on off-policy human demonstration, which in some cases leads to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous robots 2022-01, Vol.46 (1), p.99-113
Hauptverfasser: Spencer, Jonathan, Choudhury Sanjiban, Barnes, Matthew, Schmittle Matthew, Chiang Mung, Ramadge, Peter, Sidd, Srinivasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scalable robot learning from human-robot interaction is critical if robots are to solve a multitude of tasks in the real world. Current approaches to imitation learning suffer from one of two drawbacks. On the one hand, they rely solely on off-policy human demonstration, which in some cases leads to a mismatch in train-test distribution. On the other, they burden the human to label every state the learner visits, rendering it impractical in many applications. We argue that learning interactively from expert interventions enjoys the best of both worlds. Our key insight is that any amount of expert feedback, whether by intervention or non-intervention, provides information about the quality of the current state, the quality of the action, or both. We formalize this as a constraint on the learner’s value function, which we can efficiently learn using no regret, online learning techniques. We call our approach Expert Intervention Learning (EIL), and evaluate it on a real and simulated driving task with a human expert, where it learns collision avoidance from scratch with just a few hundred samples (about one minute) of expert control.
ISSN:0929-5593
1573-7527
DOI:10.1007/s10514-021-10006-9