The CMO-Dirichlet Problem for the Schrödinger Equation in the Upper Half-Space and Characterizations of CMO
Let L be a Schrödinger operator of the form L = - Δ + V acting on L 2 ( R n ) where the non-negative potential V belongs to the reverse Hölder class RH q for some q ≥ ( n + 1 ) / 2 . Let CMO L ( R n ) denote the function space of vanishing mean oscillation associated to L . In this article, we will...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2022-04, Vol.32 (4), Article 130 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
L
be a Schrödinger operator of the form
L
=
-
Δ
+
V
acting on
L
2
(
R
n
)
where the non-negative potential
V
belongs to the reverse Hölder class
RH
q
for some
q
≥
(
n
+
1
)
/
2
. Let
CMO
L
(
R
n
)
denote the function space of vanishing mean oscillation associated to
L
. In this article, we will show that a function
f
of
CMO
L
(
R
n
)
is the trace of the solution to
L
u
=
-
u
tt
+
L
u
=
0
,
u
(
x
,
0
)
=
f
(
x
)
, if and only if,
u
satisfies a Carleson condition
sup
B
:
balls
C
u
,
B
:
=
sup
B
(
x
B
,
r
B
)
:
balls
r
B
-
n
∫
0
r
B
∫
B
(
x
B
,
r
B
)
|
t
∇
u
(
x
,
t
)
|
2
dx
dt
t
<
∞
,
and
lim
a
→
0
sup
B
:
r
B
≤
a
C
u
,
B
=
lim
a
→
∞
sup
B
:
r
B
≥
a
C
u
,
B
=
lim
a
→
∞
sup
B
:
B
⊆
B
(
0
,
a
)
c
C
u
,
B
=
0
.
This continues the lines of the previous characterizations by Duong et al. (J Funct Anal 266(4):2053–2085, 2014) and Jiang and Li (
ArXiv:2006.05248v1
) for the
BMO
L
spaces, which were founded by Fabes et al. (Indiana Univ Math J 25:159–170, 1976) for the classical BMO space. For this purpose, we will prove two new characterizations of the
CMO
L
(
R
n
)
space, in terms of mean oscillation and the theory of tent spaces, respectively. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-022-00875-6 |